Black Soldier Fly Larvae’s Optimal Feed Intake and Rearing Density: A Welfare Perspective (Part II)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Colony Status
2.2. Waste Ingredients and Dietary Substrates
- Omnivorous (O): 16.66% potato, 16.67% carrot, 16.67% thresher of beer, 25.00% epiglottis of beef, 25.00% cod.
- Control (C): 72.72% water, 27.28% laying hens feed.
2.3. Experimental Design
2.3.1. Trial 1—Feeding Rate
- 50 mg of feed/larva/day (C.50, O.50);
- 100 mg of feed/larva/day (C.100, O.100);
- 200 mg of feed/larva/day (C.200, O.200).
2.3.2. Trial 2—Density
- 5 larvae/cm2 (C.5, O.5, 3045 estimated larvae);
- 10 larvae/cm2 (C.10, O.10, 6090 estimated larvae);
- 15 larvae/cm2 (C.15, O.15, 9135 estimated larvae).
2.4. Growth Performance of Black Soldier Fly Larvae
2.5. Chemical Composition of Black Soldier Fly Larvae
2.6. pH Evaluation
2.7. Statistical Analysis
2.8. Process Modeling and Optimization
3. Results
3.1. Growth Performance and Waste Reduction Efficiency of Black Soldier Fly Larvae
3.1.1. Trial 1—Feeding Rate
3.1.2. Trial 2—Rearing Density
3.2. Chemical Composition of Black Soldier Fly Larvae
3.2.1. Trial 1—Feeding Rate
3.2.2. Trial 2—Rearing Density
3.3. Process Modeling and Optimization
3.3.1. Trial 1—Feeding Rate
3.3.2. Trial 2—Rearing Density
3.4. pH Variation
4. Discussion
4.1. Trial 1—Feeding Rate
4.1.1. Feed Intake, Rearing Performances and Larvae Chemical Composition
4.1.2. Welfare Perspective on Feeding Rate
4.2. Trial 2—Rearing Density
4.2.1. Rearing Densities
4.2.2. Change in pH of the Substrate During the Rearing
4.2.3. Relationship Between Density, Feeding Rate and pH
4.2.4. Welfare Perspective on Density
4.3. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Organisation for Animal Health, Terrestrial Animal Health Code. Available online: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/2018/en_chapitre_aw_introduction.htm (accessed on 29 September 2024).
- FAWC (Farm Animal Welfare Council) Report on Priorities for Animal Welfare Research and Development 1993. Available online: https://edepot.wur.nl/134980 (accessed on 30 October 2024).
- Cohen, A.C. Insect Diets: Science and Technology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-0-429-16808-6. [Google Scholar]
- Cohen, A.C. Design, Operation, and Control of Insect-Rearing Systems: Science, Technology, and Infrastructure; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-0-203-70295-6. [Google Scholar]
- Brambell, F.W.R. Report of the Technical Committee to Enquire into the Welfare of Animals Kept Under Intensive Livestock Husbandry Systems; Her Majesty’s Stationery Office: London, UK, 1965. [Google Scholar]
- FAWAC Press Statement 1979. Available online: http://publicaccess.staffsmoorlands.gov.uk/portal/servlets/AttachmentShowServlet?ImageName=175452 (accessed on 30 October 2024).
- De Goede, D.M.; Erens, J.; Kapsomenou, E.; Peters, M. Large Scale Insect Rearing and Animal Welfare. In The Ethics of Consumption; Röcklinsberg, H., Sandin, P., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 236–242. ISBN 978-90-8686-784-4. [Google Scholar]
- European Commission, E. Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying down Health Rules as Regards Animal by-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal by-Products Regulation) 2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:300:0001:0033:en:PDF (accessed on 10 September 2024).
- Gjerris, M.; Gamborg, C.; Röcklinsberg, H. Ethical Aspects of Insect Production for Food and Feed. J. Insects Food Feed 2016, 2, 101–110. [Google Scholar] [CrossRef]
- IPIFF. IPIFF Contribution Paper ‘The European Insect Sector’s Response to the Growing Demand for EU Organic Products’ 2021. Available online: https://ipiff.org/wp-content/uploads/2019/03/IPIFF_Contribution_Paper_on_EU_organic_certification_of_insect_production_activities_29-03-2019.pdf (accessed on 10 September 2024).
- Grandin, T. The Importance of Measurement to Improve the Welfare of Livestock, Poultry, and Fish. In Improving Animal Welfare A Practical Approach; Grandin, T., Ed.; CABI: Wallingford, UK, 2015; pp. 15–34. ISBN 978-1-78064-469-1. [Google Scholar]
- Barrett, M.; Chia, S.Y.; Fischer, B.; Tomberlin, J.K. Welfare Considerations for Farming Black Soldier Flies, Hermetia Illucens (Diptera: Stratiomyidae): A Model for the Insects as Food and Feed Industry. J. Insects Food Feed 2023, 9, 119–148. [Google Scholar] [CrossRef]
- Angilletta, M.J.; Niewiarowski, P.H.; Navas, C.A. The Evolution of Thermal Physiology in Ectotherms. J. Therm. Biol. 2002, 27, 249–268. [Google Scholar] [CrossRef]
- Willmer, P. Thermal Biology and Mate Acquisition in Ectotherms. Trends Ecol. Evol. 1991, 6, 396–399. [Google Scholar] [CrossRef]
- Erens, J.; van Es, S.; Haverkort, F.; Kapsomenou, E.; Luijben, A. A Bug’s Life. Large-Scale Insect Rearing in Relation to Animal Welfare 2021, Wageningen University. Available online: https://venik.nl/onewebmedia/Rapport-Large-scale-insect-rearing-in-relation-to-animal-welfare.pdf (accessed on 10 September 2024).
- Arango Gutierrez, G.P. Aportes Nutricionales de La Biomasa de Hermetia illucens L. (Diptera: Stratiomyidae) En La Cria de Pollos de Engorde. Master’s Thesis, Universidad Nacional de Colombia, Bogota, Colombia, 2005. [Google Scholar]
- Banks, I. To Assess the Impact of Black Soldier Fly (Hermetia illucens) Larvae on Faecal Reduction in Pit Latrines. Ph.D. Thesis, London School of Hygiene & Tropical Medicine, London, UK, 2014. [Google Scholar] [CrossRef]
- Julita, U.; Suryani, Y.; Kinasih, I.; Yuliawati, A.; Cahyanto, T.; Maryeti, Y.; Permana, A.D.; Fitri, L.L. Growth Performance and Nutritional Composition of Black Soldier Fly, Hermetia illucens (L.), (Diptera: Stratiomyidae) Reared on Horse and Sheep Manure. IOP Conf. Ser. Earth Environ. Sci. 2018, 187, 012071. [Google Scholar] [CrossRef]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinnerås, B. High Waste-to-Biomass Conversion and Efficient Salmonella spp. Reduction Using Black Soldier Fly for Waste Recycling. Agron. Sustain. Dev. 2015, 35, 261–271. [Google Scholar] [CrossRef]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of Rearing Substrate on Growth Performance, Waste Reduction Efficiency and Chemical Composition of Black Soldier Fly (Hermetia illucens) Larvae: Rearing Substrate Effects on Performance and Nutritional Composition of Black Soldier Fly. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef]
- Mutafela, R.N. High Value Organic Waste Treatment Via Black Soldier Fly Onsite Pilot Study. Master of Science Thesis, Royal Institute of Technology, Stockholm. 2015. Available online: https://www.diva-portal.org/smash/get/diva2:868277/FULLTEXT02.pdf (accessed on 10 September 2024).
- Newton, L.; Sheppard, D.; Watson, D.; Burtle, G.; Dove, C.; Tomberlin, J.; Thelen, E. The Black Soldier Fly, Hermetia Illucens, as a Manure Management/Resource Recovery Tool. In Symposium on the State of the Science of Animal Manure and Waste Management; National Center for Manure & Animal Waste Management: San Antonio, TX, USA, 2005. [Google Scholar]
- Wang, Y.-S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef]
- Abduh, M.Y.; Nadia, M.H.; Syaripudin; Manurung, R.; Putra, R.E. Factors Affecting the Bioconversion of Philippine Tung Seed by Black Soldier Fly Larvae for the Production of Protein and Oil-Rich Biomass. J. Asia-Pac. Entomol. 2018, 21, 836–842. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J. Influence of Larval Density and Dietary Nutrient Concentration on Performance, Body Protein, and Fat Contents of Black Soldier Fly Larvae (Hermetia illucens). Entomol. Exp. Appl. 2018, 166, 761–770. [Google Scholar] [CrossRef]
- Dzepe, D.; Nana, P.; Fotso, A.; Tchuinkam, T.; Djouaka, R. Influence of Larval Density, Substrate Moisture Content and Feedstock Ratio on Life History Traits of Black Soldier Fly Larvae. J. Insects Food Feed 2020, 6, 133–140. [Google Scholar] [CrossRef]
- Veldkamp, T.; Van Duinkerken, G.; Van Huis, A.; Lakemond, C.M.M.; Ottevaekel, E.; Boekel, M.A.J.S. Insects as a Sustainable Feed Ingredient in Pig and Poultry Diets—A Feasibility Study; Report 638; Wageningen UR Livestock Production: Wageningen, The Netherlands, 2012; pp. 1–48. [Google Scholar]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of Organic Material by Black Soldier Fly Larvae: Establishing Optimal Feeding Rates. Waste Manag. Res. J. Sustain. Circ. Econ. 2009, 27, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Nyakeri, E.M.; Ayieko, M.A.; Amimo, F.A.; Salum, H.; Ogola, H.J.O. An Optimal Feeding Strategy for Black Soldier Fly Larvae Biomass Production and Faecal Sludge Reduction. J. Insects Food Feed 2019, 5, 201–213. [Google Scholar] [CrossRef]
- Nekrasova, L.S. Experimental Study on the Effects of Population Density of Bloodsucking Mosquito (Aedes communis Deg.) Larvae on Their Biological Characteristics. Russ. J. Ecol. 2004, 35, 194–199. [Google Scholar] [CrossRef]
- Kalová, M.; Borkovcová, M. Voracious Larvae Hermetia illucens and Treatment of Selected Types of Biodegradable Waste. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 77–83. [Google Scholar] [CrossRef]
- Ruiu, L.; Satta, A.; Floris, I. Observations on House Fly Larvae Midgut Ultrastructure after Brevibacillus laterosporus Ingestion. J. Invertebr. Pathol. 2012, 111, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Kortsmit, Y.; van der Bruggen, M.; Wertheim, B.; Dicke, M.; Beukeboom, L.; van Loon, J. Behaviour of Two Fly Species Reared for Livestock Feed: Optimising Production and Insect Welfare. J. Insects Food Feed 2022, 9, 149–169. [Google Scholar] [CrossRef]
- Podhorna, J.; Aubernon, C.; Borkovcova, M.; Boulay, J.; Hedouin, V.; Charabidze, D. To Eat or Get Heat: Behavioral Trade-Offs between Thermoregulation and Feeding in Gregarious Necrophagous Larvae. Insect Sci. 2018, 25, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Parra Paz, A.S.; Carrejo, N.S.; Gómez Rodríguez, C.H. Effects of Larval Density and Feeding Rates on the Bioconversion of Vegetable Waste Using Black Soldier Fly Larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste Biomass Valorization 2015, 6, 1059–1065. [Google Scholar] [CrossRef]
- Purkayastha, D.; Sarkar, S. Sustainable Waste Management Using Black Soldier Fly Larva: A Review. Int. J. Environ. Sci. Technol. 2022, 19, 12701–12726. [Google Scholar] [CrossRef]
- Dzepe, D.; Nana, P.; Kuietche, H.M.; Kimpara, J.M.; Magatsing, O.; Tchuinkam, T.; Djouaka, R. Feeding Strategies for Small-Scale Rearing Black Soldier Fly Larvae (Hermetia illucens) as Organic Waste Recycler. SN Appl. Sci. 2021, 3, 252. [Google Scholar] [CrossRef]
- Nana, P.; Kimpara, J.M.; Tiambo, C.K.; Tiogue, C.T.; Youmbi, J.; Choundong, B.; Fonkou, T. Black Soldier Flies (Hermetia illucens Linnaeus) as Recyclers of Organic Waste and Possible Livestock Feed. Int. J. Biol. Chem. Sci. 2019, 12, 2004. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Sheppard, D.C. Joyce Selected Life-History Traits of Black Soldier Flies (Diptera: Stratiomyidae) Reared on Three Artificial Diets. Ann. Entomol. Soc. Am. 2002, 95, 379–386. [Google Scholar] [CrossRef]
- Rivers, D.B.; Dahalem, G.A. The Science of Forensic Entomology; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Green, P.W.C.; Simmonds, M.S.J.; Blaney, W.M. Does the Size of Larval Groups Influence the Effect of Metabolic Inhibitors on the Development of Phormia Regina (Diptera: Calliphoridae) Larvae? EJE 2013, 99, 19–22. [Google Scholar] [CrossRef]
- Green, T.R.; Popa, R. Enhanced Ammonia Content in Compost Leachate Processed by Black Soldier Fly Larvae. Appl. Biochem. Biotechnol. 2012, 166, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z. Black Soldier Fly (Diptera: Stratiomyidae) Larvae Reduce Escherichia coli in Dairy Manure. Environ. Entomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef]
- Bryant, E.H.; Sokal, R.R. The Fate of Immature Housefly Populations at Low and High Densities. Popul. Ecol. 1967, 9, 19–44. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Zhu, F.; Wang, X.; Wang, X.; Lei, C. The Gut Microbiota in Larvae of the Housefly Musca Domestica and Their Horizontal Transfer through Feeding. AMB Express 2017, 7, 147. [Google Scholar] [CrossRef]
- Dortmans, B.; Diener, S.; Bart, V.; Zurbrügg, C. Black Soldier Fly Biowaste Processing: A Step-by-Step Guide; Eawag: Dübendorf, Switzerland, 2017. [Google Scholar]
- Siddiqui, S.A.; Ristow, B.; Rahayu, T.; Putra, N.S.; Widya Yuwono, N.; Nisa’, K.; Mategeko, B.; Smetana, S.; Saki, M.; Nawaz, A.; et al. Black Soldier Fly Larvae (BSFL) and Their Affinity for Organic Waste Processing. Waste Manag. 2022, 140, 1–13. [Google Scholar] [CrossRef]
- Belperio, S.; Cattaneo, A.; Nannoni, E.; Sardi, L.; Martelli, G.; Dabbou, S.; Meneguz, M. Assessing Substrate Utilization and Bioconversion Efficiency of Black Soldier Fly (Hermetia illucens) Larvae: Effect of Diet Composition on Growth and Development Temperature. Animals 2024, 14, 1340. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.Y.; Kutty, S.R.M.; Malakahmad, A.; Tan, C.K. Feasibility Study of Biodiesel Production Using Lipids of Hermetia Illucens Larva Fed with Organic Waste. Waste Manag. 2016, 47, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Ciptono; Suhandoyo; Harjana, T.; Putri, R.A. The Effect of Leaf-Waste Type and Bioconversion Ability Based on Feed Conversion Ratio in Black Soldiers Fly Larvae (Hermetia illucens, L.). In Proceedings of the 7th International Conference on Research, Implementation, and Education of Mathematics and Sciences (ICRIEMS 2020), Yogyakarta, Indonesia, 8 March 2021. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990; Volume 1. [Google Scholar]
- Janssen, R.H.; Vincken, J.-P.; van den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1980, 74, 3583–3597. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; Team, R.C. Nlme: Linear and Nonlinear Mixed Effects Models. Appl. Math. 2021, 12, 7. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.8.8. Am. Stat. 2023, 344, 216–221. [Google Scholar]
- Hotelling, H. The Generalization of Student’s Ratio; Springer: New York, NY, USA, 1931. [Google Scholar] [CrossRef]
- Cattaneo, A.; Belperio, S.; Sardi, L.; Martelli, G.; Nannoni, E.; Meneguz, M.; Dabbou, S. A First Step Towards Black Soldier Fly Larvae (Diptera: Stratiomyidae) Welfare by Considering Dietary Regimes (Part I). Insects 2024, 15, 817. [Google Scholar] [CrossRef]
- Intayung, D.; Chundang, P.; Srikachar, S.; Kovitvadhi, A. Ontogenic Development of the Digestive Enzymes and Chemical Composition of Hermetia Illucens Larvae of Different Ages. Entomol. Exp. Appl. 2021, 169, 665–673. [Google Scholar] [CrossRef]
- Kim, W.; Bae, S.; Park, K.; Lee, S.; Choi, Y.; Han, S.; Koh, Y. Biochemical Characterization of Digestive Enzymes in the Black Soldier Fly, Hermetia Illucens (Diptera: Stratiomyidae). J. Asia-Pac. Entomol. 2011, 14, 11–14. [Google Scholar] [CrossRef]
- Kim, W.-T.; Bae, S.-W.; Kim, A.-Y.; Park, K.-H.; Lee, S.-B.; Choi, Y.-C.; Han, S.-M.; Park, Y.-H.; Koh, Y.-H. Characterization of the Molecular Features and Expression Patterns of Two Serine Proteases in Hermetia Illucens (Diptera: Stratiomyidae) Larvae. BMB Rep. 2011, 44, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of Biowaste Macronutrients, Microbes, and Chemicals in Black Soldier Fly Larval Treatment: A Review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, M.; Bruno, D.; Caccia, S.; Sgambetterra, G.; Cappellozza, S.; Jucker, C.; Tettamanti, G.; Casartelli, M. Structural and Functional Characterization of Hermetia illucens Larval Midgut. Front. Physiol. 2019, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Addeo, N.F.; Vozzo, S.; Secci, G.; Mastellone, V.; Piccolo, G.; Lombardi, P.; Parisi, G.; Asiry, K.A.; Attia, Y.A.; Bovera, F. Different Combinations of Butchery and Vegetable Wastes on Growth Performance, Chemical-Nutritional Characteristics and Oxidative Status of Black Soldier Fly Growing Larvae. Animals 2021, 11, 3515. [Google Scholar] [CrossRef] [PubMed]
- Tomberlin, J.K. The Story of a Plant—How Kudzu Started a Black Soldier Fly Colony. 2017. Available online: https://osf.io/yd5bt/download/?format=pdf (accessed on 10 September 2024).
- Jones, B.M.; Tomberlin, J.K. Impact of Larval Competition on Life-History Traits of the Black Soldier Fly (Diptera: Stratiomyidae). Ann. Entomol. Soc. Am. 2019, 112, 505–510. [Google Scholar] [CrossRef]
- Ma, J.; Lei, Y.; ur Rehman, K.; Yu, Z.; Zhang, J.; Li, W.; Li, Q.; Tomberlin, J.K.; Zheng, L. Dynamic Effects of Initial pH of Substrate on Biological Growth and Metamorphosis of Black Soldier Fly (Diptera: Stratiomyidae). Environ. Entomol. 2018, 47, 159–165. [Google Scholar] [CrossRef]
- Pang, W.; Hou, D.; Chen, J.; Nowar, E.E.; Li, Z.; Hu, R.; Tomberlin, J.K.; Yu, Z.; Li, Q.; Wang, S. Reducing Greenhouse Gas Emissions and Enhancing Carbon and Nitrogen Conversion in Food Wastes by the Black Soldier Fly. J. Environ. Manag. 2020, 260, 110066. [Google Scholar] [CrossRef]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Alidadi, H.; Hosseinzadeh, A.; Najafpoor, A.A.; Esmaili, H.; Zanganeh, J.; Dolatabadi Takabi, M.; Piranloo, F.G. Waste Recycling by Vermicomposting: Maturity and Quality Assessment via Dehydrogenase Enzyme Activity, Lignin, Water Soluble Carbon, Nitrogen, Phosphorous and Other Indicators. J. Environ. Manag. 2016, 182, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Bosch, G.; Oonincx, D.G.A.B.; Jordan, H.R.; Zhang, J.; Van Loon, J.J.A.; Van Huis, A.; Tomberlin, J.K. Standardisation of Quantitative Resource Conversion Studies with Black Soldier Fly Larvae. J. Insects Food Feed 2020, 6, 95–109. [Google Scholar] [CrossRef]
- Huang, K.; Li, F.; Wei, Y.; Fu, X.; Chen, X. Effects of Earthworms on Physicochemical Properties and Microbial Profiles during Vermicomposting of Fresh Fruit and Vegetable Wastes. Bioresour. Technol. 2014, 170, 45–52. [Google Scholar] [CrossRef]
- Barrett, M.; Miranda, C.; Veloso, I.T.; Flint, C.; Perl, C.D.; Martinez, A.; Fischer, B.; Tomberlin, J.K. Grinding as a Slaughter Method for Farmed Black Soldier Fly (Hermetia illucens) Larvae: Empirical Recommendations to Achieve Instantaneous Killing. Anim. Welf. 2024, 33, e16. [Google Scholar] [CrossRef]
- Fischer, B.; Barrett, M.; Adcock, S.; Barron, A.; Browning, H.; Chittka, L.; Drinkwater, E.; Gibbons, M.; Haverkamp, A.; Perl, C. Guidelines for Protecting and Promoting Insect Welfare in Research; Animal Welfare Research Society: Dover, DE, USA, 2023. [Google Scholar]
Chemical Composition | Control | Omnivorous |
---|---|---|
Dry matter (%) | 27.2 | 25.6 |
Crude protein | 14.4 | 31.8 |
Crude fat | 5.35 | 13.4 |
Ash | 13.9 | 6.77 |
Fiber | 5.02 | 9.65 |
Neutral detergent fiber | 17.3 | 33.2 |
Acid detergent fiber | 8.23 | 13.9 |
Acid detergent lignin | 2.73 | 4.90 |
Starch | 33.8 | 20.3 |
Formula Number | Title | Calculations | References |
---|---|---|---|
(1) | Growth rate—GR (mg/day) | [20,49] | |
(2) | Feed conversion ratio—FCR | Adapted by Ciptono et al. [50] | |
(3) | Feeding rate—FR (mg/day/larva) | [28] | |
(4) | Substrate reduction—SR (%) | [49] | |
(5) | Waste reduction index—WRI | [49] | |
(6) | Efficiency of conversion of digested food—ECD | Adapted by Leong et al. [49] | |
(7) | Survival rate—SuR (%) | × 100) | n.a. |
Diet (D) | Feeding Rate (FR) | RMSE | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | O | 50 | 100 | 200 | D | FR | D × FR | ||
Final larval weight (mg) | 91.12 B | 124.64 A | 59.82 C | 103.75 B | 160.06 A | 5.09 | <0.001 | <0.001 | 0.034 |
Final larval biomass (g) | 205.96 B | 311.32 A | 148.94 C | 257.31 B | 369.66 A | 10.7 | <0.001 | <0.001 | <0.001 |
Final frass biomass (g) | 359.27 A | 293.34 B | 134.08 C | 309.16 B | 535.65 A | 22.2 | <0.001 | <0.001 | 0.03 |
Growth rate (mg/day) | 7.01 B | 11.15 A | 4.89 C | 11.16 B | 11.20 A | 0.65 | <0.001 | <0.001 | 0.002 |
Substrate reduction (%) | 79.63 B | 85.16 A | 83.23 A | 80.68 C | 83.26 B | 1.12 | <0.001 | 0.001 | <0.001 |
Feed conversion ratio | 9.57 A | 5.81 B | 7.50 B | 6.85 B | 8.73 A | 0.41 | <0.001 | <0.001 | 0.355 |
WRI (%) | 9.73 B | 10.51 A | 11.89 A | 11.52 B | 6.94 C | 0.15 | <0.001 | <0.001 | <0.001 |
ECD (%) | 0.15 B | 0.22 A | 0.22 A | 0.20 B | 0.14 C | 0.01 | <0.001 | <0.001 | 0.001 |
Larval length (cm) | 1.56 A | 1.60 A | 1.27 B | 1.48 B | 1.98 A | 0.10 | 0.38 | <0.001 | <0.001 |
Real FR (mg/larva/day) | 101.58 | 101.58 | 57.14 | 114.28 | 133.24 | 1.76 | 0.450 | 0.006 | 0.354 |
SuR (%) (*) | 95.91 | 97.75 | 96.50 | 98.50 | 97.50 | 2.578 | 0.152 | 0.156 | 0.115 |
Diet (D) | Density (Den) | RMSE | p | ||||||
---|---|---|---|---|---|---|---|---|---|
C | O | 5 | 10 | 15 | D | Den | D × Den | ||
Final larval weight (mg) | 112.71 A | 99.69 B | 108.06 A,B | 112.63 A | 97.92 B | 0.990 | 0.003 | 0.016 | 0.023 |
Final larval biomass (g) | 799.92 A | 717.44 B | 440.92 B | 917.13 A | 917.98 A | 4.61 | <0.001 | <0.001 | <0.001 |
Final frass biomass (g) | 689.88 A | 538.24 B | 404.39 B | 729.95 A | 707.85 A | 4.82 | <0.001 | <0.001 | 0.458 |
Growth rate (mg/day) | 11.57 A | 7.82 B | 12.25 A | 9.27 B | 7.56 B | 0.128 | <0.001 | <0.001 | 0.014 |
Substrate reduction (%) | 82.65 B | 86.60 A | 83.40 b | 85.01 a | 85.47 a | 0.150 | <0.001 | 0.021 | 0.420 |
Feed Conversion Ratio | 5.57 B | 6.42 A | 5.82 B | 5.68 A | 6.49 A | 0.054 | <0.001 | 0.011 | <0.001 |
WRI (%) | 11.45 A | 9.36 B | 12.87 A | 9.14 B | 9.20 B | 0.023 | <0.001 | <0.001 | <0.001 |
ECD (%) | 0.23 A | 0.21 B | 0.22 | 0.22 | 0.22 | 0.001 | <0.001 | 0.771 | <0.001 |
Larval length (cm) | 1.52 | 1.54 | 1.50 | 1.54 | 1.55 | 0.009 | 0.560 | 0.517 | 0.278 |
Real FR (mg/larva/day) | 100.00 | 78.50 | 123.81 | 86.36 | 57.57 | 0.000 | <0.001 | <0.001 | <0.001 |
SuR (%) (*) | 96.54 b | 98.46 a | 97.65 | 97.28 | 97.56 | 1.620 | 0.024 | 0.918 | 0.597 |
Diet (D) | Feeding Rate (FR) | RMSE | p | ||||||
---|---|---|---|---|---|---|---|---|---|
Trial 1 | C | O | 50 | 100 | 200 | D | FR | D × FR | |
Dry Matter (%) | 36.71 | 37.39 | 35.85 B | 35.25 B | 40.06 A | 0.685 | 0.051 | <0.001 | <0.001 |
Crude Protein | 29.97 B | 31.29 A | 32.05 A | 29.27 C | 30.56 B | 0.508 | <0.001 | <0.001 | 0.043 |
Crude Fat | 20.33 B | 27.76 A | 20.37 C | 22.97 B | 28.80 A | 1.098 | <0.001 | <0.001 | 0.437 |
Ash | 14.79 A | 6.55 B | 10.33 A | 10.37 A | 11.30 B | 0.310 | <0.001 | <0.001 | <0.001 |
Diet (D) | Density (Den) | RMSE | p | ||||||
---|---|---|---|---|---|---|---|---|---|
Trial 2 | C | O | 5 | 10 | 15 | D | Den | D × Den | |
Dry Matter (%) | 37.87 b | 39.69 a | 37.36 B | 41.02 A | 37.97 A,B | 1.761 | 0.045 | 0.006 | 0.354 |
Crude Protein | 26.54 B | 34.67 A | 31.73 A | 30.00 B | 30.08 B | 0.477 | <0.001 | <0.001 | 0.016 |
Crude Fat | 20.94 B | 27.20 A | 23.22 B | 25.57 A | 23.42 B | 0.825 | <0.001 | <0.001 | 0.140 |
Ash | 19.11 A | 6.84 B | 12.63 B | 12.51 A | 13.78 A | 0.307 | <0.001 | <0.001 | 0.854 |
Diet | FR (mg/Larva/Day) | Larval Weight (mg) | GR (mg/Day) | SR (%) | WRI (%) | ECD | FCR | Desirability | |
Trial 1 | C | 175 | 128 | 10.4 | 80.8 | 8.41 | 0.12 | 9.59 | 0.542 |
O | 90.2 | 116 | 13.2 | 84.4 | 12.2 | 0.24 | 5.25 | 0.62 | |
Diet | Den (Larva/cm2) | Larval Weight (mg) | GR (mg/Day) | SR (%) | WRI (%) | ECD | FCR | Desirability | |
Trial 2 | C | 7.57 | 122.15 | 12.46 | 81.93 | 11.50 | 0.22 | 5.31 | 0.52 |
O | 5.00 | 108.34 | 11.39 | 86.18 | 12.27 | 0.22 | 5.46 | 0.731 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattaneo, A.; Belperio, S.; Sardi, L.; Martelli, G.; Nannoni, E.; Dabbou, S.; Meneguz, M. Black Soldier Fly Larvae’s Optimal Feed Intake and Rearing Density: A Welfare Perspective (Part II). Insects 2025, 16, 5. https://doi.org/10.3390/insects16010005
Cattaneo A, Belperio S, Sardi L, Martelli G, Nannoni E, Dabbou S, Meneguz M. Black Soldier Fly Larvae’s Optimal Feed Intake and Rearing Density: A Welfare Perspective (Part II). Insects. 2025; 16(1):5. https://doi.org/10.3390/insects16010005
Chicago/Turabian StyleCattaneo, Arianna, Simona Belperio, Luca Sardi, Giovanna Martelli, Eleonora Nannoni, Sihem Dabbou, and Marco Meneguz. 2025. "Black Soldier Fly Larvae’s Optimal Feed Intake and Rearing Density: A Welfare Perspective (Part II)" Insects 16, no. 1: 5. https://doi.org/10.3390/insects16010005
APA StyleCattaneo, A., Belperio, S., Sardi, L., Martelli, G., Nannoni, E., Dabbou, S., & Meneguz, M. (2025). Black Soldier Fly Larvae’s Optimal Feed Intake and Rearing Density: A Welfare Perspective (Part II). Insects, 16(1), 5. https://doi.org/10.3390/insects16010005