A Dual-Cycle Isothermal Amplification Method for microRNA Detection: Combination of a Duplex-Specific Nuclease Enzyme-Driven DNA Walker with Improved Catalytic Hairpin Assembly
Abstract
:1. Introduction
2. Results
2.1. Design Principle of the Combination of a DSN-Driven DNA Walker with Improved CHA for miRNA Detection
2.2. Verification of the Feasibility of the Detection System
2.3. Optimization of the Reaction Conditions for miRNA Determination
2.4. Performance and Selectivity of the Detection Strategy
2.5. Analysis of miRNAs in Real Samples
3. Discussion
4. Materials and Methods
4.1. Reagents and Apparatus
4.2. Synthesis of SA-MBs Conjugated Biotin–TEG-Modified Trigger-Released DNA Probes
4.3. Combining the DSN-Driven DNA Walker and Improved CHA to Detect the Targeted miRNA
4.4. Agarose Gel Electrophoresis
4.5. Extraction of Total RNA from MCF-7 and 22RV1 Cells and Human Serum Collection
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, G.; Xiao, Q.Y.; Zhao, J.Y.; Chen, H.R.; Xu, Y.; Tan, M.H.; Peng, L.H. Brucea javanica derived exosome-like nanovesicles deliver miRNAs for cancer therapy. J. Control. Release 2024, 367, 425–440. [Google Scholar] [CrossRef]
- Wu, Y.D.; Li, Q.; Zhang, R.S.; Dai, X.L.; Chen, W.J.; Xing, D.M. Circulating microRNAs: Biomarkers of disease. Clin. Chim. Acta 2021, 516, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Mok, E.T.Y.; Chitty, J.L.; Cox, T.R. miRNAs in pancreatic cancer progression and metastasis. Clin. Exp. Metastasis 2024, 41, 163–186. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; El-Mahdy, H.A.; Abulsoud, A.I.; Sallam, A.M.; Eldeib, M.G.; Elsakka, E.G.E.; Zaki, M.B.; Doghish, A.S. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int. J. Biol. Macromol. 2023, 224, 1541–1565. [Google Scholar] [CrossRef]
- Han, Y.; Hu, H.H.; Yu, L.S.; Zeng, S.; Min, J.Z.; Cai, S. duplex-specific nuclease (DSN) and catalytic hairpin assembly (CHA)-mediated dual amplification method for miR-146b detection. Analyst 2023, 148, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Talap, J.; AL-maskri, A.A.A.; Shen, M.Z.; Liu, H.; Jiang, X.F.; Xiao, G.Z.; Yu, L.S.; Zeng, S.; Jung, C.; Cai, S. Ultrasensitive detection of serum miRNA biomarkers related to papillary thyroid cancer using ligation-initiated phosphorothioated primer-based loop-mediated isothermal amplification. Sens. Actuator B-Chem. 2023, 374, 132785. [Google Scholar] [CrossRef]
- Bizzarri, A.R. Molecular dynamics simulations of the miR-155 duplex: Impact of ionic strength on structure and Na+ and Cl− ion distribution. Molecules 2024, 29, 4246. [Google Scholar] [CrossRef]
- Han, Y.; Li, J.; Li, M.; An, R.; Zhang, X.; Cai, S. A chemiluminescence signal amplification method for microRNA detection: The combination of molecular aptamer beacons with enzyme-free hybridization chain reaction. Molecules 2024, 29, 5782. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Yu, Y.; Cao, Y.J.; Guo, M.L.; Lin, B.X. Self-assembly of hyperbranched DNA network structure for signal amplification detection of miRNA. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2024, 314, 124192. [Google Scholar] [CrossRef]
- Luo, Z.W.; Li, Y.X.; Zhang, P.; He, L.; Feng, Y.T.; Feng, Y.Q.; Qian, C.; Tian, Y.H.; Duan, Y.X. Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: Design, evolution and application. Trac-Trends Anal. Chem. 2022, 151, 116582. [Google Scholar] [CrossRef]
- Kim, E.; Xu, J.X.; Kim, J.; Chun, H. Improving the robustness of a catalyzed hairpin assembly with a three-arm nanostructure for nonenzymatic signal amplification. Analyst 2022, 147, 1899–1905. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Yue, S.Z.; Zhang, S.S. Hybridization chain reaction: A versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 2017, 46, 4281–4298. [Google Scholar] [CrossRef]
- Xu, M.D.; Lin, L.; Li, N.; Jiang, X.Y.; Li, J.L.; Gong, L.Z.; Zhuang, J.Y. Nanoscale assembly line composed of dual DNA-machines enabling sensitive microRNA detection using up conversion nanoparticles probes. J. Pharm. Biomed. Anal. 2021, 195, 113842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Yin, Y.; Du, S.M.; Kong, L.Q.; Chai, Y.Q.; Li, Z.H.; Yuan, R. Dual 3D DNA nanomachine-mediated catalytic hairpin assembly for ultrasensitive detection of microRNA. Anal. Chem. 2021, 93, 13852–13959. [Google Scholar] [CrossRef]
- Jung, C.; Allen, P.B.; Ellington, A.D. A stochastic DNA walker that traverses a microparticle surface. Nat. Nanotechnol. 2016, 11, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.X.; Hu, Y.L.; Zhang, C.C.; Liu, R.; Lv, Y. Single particle analysis-enhanced DNA walking machine for sensitive miRNA detection. Anal. Chem. 2024, 96, 11566–11571. [Google Scholar] [CrossRef] [PubMed]
- Bo, B.; Zhang, T.; Jiang, Y.T.; Cui, H.Y.; Miao, P. Triple signal amplification strategy for ultrasensitive determination of miRNA based on duplex specific nuclease and bridge DNA-gold nanoparticles. Anal. Chem. 2018, 90, 2395–2400. [Google Scholar] [CrossRef]
- Zhang, S.X.; Liu, R.; Xing, Z.; Zhang, S.C.; Zhang, X.R. Multiplex miRNA assay using lanthanide-tagged probes and the duplex-specific nuclease amplification strategy. Chem. Commun. 2016, 52, 14310–14313. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Yang, F.; Zhang, Y.L.; Ning, Y.; Yao, Q.F.; Zhang, G.J. Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease. Anal. Methods 2014, 6, 3598–3603. [Google Scholar] [CrossRef]
- Kuang, Y.Q.; Cao, J.X.; Xu, F.F.; Chen, Y. Duplex-specific nuclease-mediated amplification strategy for mass spectrometry quantification of miRNA-200c in breast cancer stem cells. Anal. Chem. 2019, 91, 8820–8826. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Y.; Chen, W.; Tang, L.H.; Yan, R.H.; Miao, P. Duplex-specific nuclease assisted miRNA assay based on gold and silver nanoparticles co-decorated on electrode interface. Anal. Chim. Acta 2020, 1107, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.P.; Zhang, H.; Yu, H.L.; Jiang, T.L.; Luo, Y. Duplex-specific nuclease-mediated bioanalysis. Trends Biotechnol. 2015, 33, 180–188. [Google Scholar] [CrossRef]
- Qi, T.; Song, C.; He, J.; Shen, W.; Kong, D.Z.; Shi, H.W.; Tan, L.; Pan, R.R.; Tang, S.; Lee, H.K. Highly sensitive detection of multiple microRNAs by high-performance liquid chromatography coupled with long and short probe-based recycling amplification. Anal. Chem. 2020, 92, 5033–5040. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Tang, Y.G.; Miao, P. Quantification of multiplex miRNAs by mass spectrometry with duplex-specific nuclease-mediated amplification. Anal. Chem. 2023, 95, 11578–11582. [Google Scholar] [CrossRef] [PubMed]
- Djebbi, K.; Shi, B.A.; Weng, T.; Bahri, M.; Elaguech, M.A.; Liu, J.; Tlili, C.; Wang, D.Q. Highly sensitive fluorescence assay for miRNA detection: Investigation of the DNA spacer effect on the DSN enzyme activity toward magnetic-bead-tethered probes. ACS Omega 2022, 7, 2224–2233. [Google Scholar] [CrossRef]
- Djebbi, K.; Xing, J.X.; Weng, T.; Bahri, M.; Elaguech, M.A.; Du, C.; Shi, B.; Hu, L.; He, S.X.; Liao, P.; et al. Highly sensitive fluorescence multiplexed miRNAs biosensors for accurate clinically diagnosis lung cancer disease using LNA-modified DNA probe and DSN enzyme. Anal. Chim. Acta 2022, 1208, 339778. [Google Scholar] [CrossRef] [PubMed]
- Bai, D.; Zhang, Y.Y.; Pu, J.; Zhang, L.; Yu, H.Y.; Han, X.L.; Lv, K.; Wang, L.; Li, J.J.; Tang, A.; et al. Sequence-unconstrained DNA computing: DSN cycling and PER circuitry for dynamic miRNAs analysis and multifunctional logic operations. Chem. Eng. J. 2024, 499, 156045. [Google Scholar] [CrossRef]
- Yu, L.Y.; Peng, Y.; Sheng, M.T.; Wang, Q.; Jin, Z.Y.; Huang, J.S.; Yang, X.R. Electrochemical biosensing platform based on toehold-mediated strand displacement reaction and DSN enzyme-assisted amplification for two-target detection. ACS Appl. Mater. Interfaces 2024, 16, 45695–45703. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.B.; Luo, K.X.; Tu, J.Y.; Zhang, Y.L.; Zhang, G.J.; Sun, Z.Y. DSN signal amplification strategy based nanochannels biosensor for the detection of miRNAs. Bioelectrochemistry 2024, 160, 108771. [Google Scholar] [CrossRef]
- Li, Q.; Liang, X.H.; Mu, X.M.; Tan, L.; Lu, J.N.; Hu, K.; Zhao, S.L.; Tian, J.N. Ratiometric fluorescent 3D DNA walker and catalyzed hairpin assembly for determination of microRNA. Microchim. Acta 2020, 187, 365. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.Y.; Fang, J.; Guo, Y.C.; Sheng, S.C.; Pu, Q.L.; Zhang, L.; Ou, X.Y.; Dai, L.; Xie, G.M. Fluorometric determination of microRNA by using an entropy-driven three-dimensional DNA walking machine based on a catalytic hairpin assembly reaction on polystyrene microspheres. Microchim. Acta 2019, 186, 574. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.J.; Chen, Z.Y.; Zuo, F.J.; Cao, R.F.; Wang, F.Y.; Wu, H.P.; Wang, S.J.; Xie, Y.J.; Ding, S.J.; Min, X. “DSN-mismatched CRISPR” sensor for highly selective and sensitive detection of under-expressed miR-let-7a. Anal. Chim. Acta 2024, 1295, 342273. [Google Scholar] [CrossRef]
- Yang, P.; Zhu, Q.J.; Chen, Z.P.; Yang, Z.Z.; Yuan, R.; Li, Y.; Liang, W.B. A target-initiated autocatalytic 3D DNA nanomachine for high-efficiency amplified detection of microRNA. Talanta 2022, 240, 123219. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.N.; Zhong, Z.J.; Lu, Q.J.; Chen, F.; Xie, L.L.; Wu, C.Y.; Zhang, Y.Y. Simple enzyme-free biosensor for highly sensitive and selective detection of miR-21 based on multiple signal amplification strategy. J. Anal. Test. 2022, 6, 36–43. [Google Scholar] [CrossRef]
- Kim, H.; Kang, S.; Park, K.S.; Park, H.G. Enzyme-free and label-free miRNA detection based on target-triggered catalytic hairpin assembly and fluorescence enhancement of DNA-silver nanoclusters. Sens. Actuator B-Chem. 2018, 260, 140–145. [Google Scholar] [CrossRef]
- Ye, C.; Wang, M.Q.; Luo, H.Q.; Li, N.B. Label-free photoelectrochemical “Off-On” platform coupled with G-wire-enhanced strategy for highly sensitive microRNA sensing in cancer cells. Anal. Chem. 2017, 89, 11697–11702. [Google Scholar] [CrossRef]
- Yang, C.Y.; Dou, B.T.; Shi, K.; Chai, Y.Q.; Xiang, Y.; Yuan, R. Multiplexed and amplified electronic sensor for the detection of microRNAs from cancer cells. Anal. Chem. 2014, 86, 11913–11918. [Google Scholar] [CrossRef]
- Ma, X.W.; Zhou, F.; Yang, D.L.; Chen, Y.; Li, M.; Wang, P.F. miRNA detection for prostate cancer diagnosis by miRoll-Cas: miRNA rolling circle transcription for CRISPR-Cas assay. Anal. Chem. 2023, 95, 13200–13226. [Google Scholar] [CrossRef] [PubMed]
- Porzycki, P.; Ciszkowicz, E.; Semik, M.; Tyrka, M. Combination of three miRNA (miR-141, miR-21, and miR-375) as potential diagnostic tool for prostate cancer recognition. Int. Urol. Nephrol. 2018, 50, 1619–1626. [Google Scholar] [CrossRef]
- Kshirsagar, P.; Seshacharyulu, P.; Muniyan, S.; Rachagani, S.; Smith, L.M.; Thompson, C.; Shah, A.S.; Mallya, K.; Kumar, S.; Jain, M.; et al. DNA-gold nanoprobe-based integrated biosensing technology for non-invasive liquid biopsy of serum miRNA: A new frontier in prostate cancer diagnosis. Nanomed.-Nanotechnol. Biol. Med. 2022, 43, 102566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Han, S.; Ren, T.; Han, L.; Ma, X.; Huang, L.; Sun, X. A Dual-Cycle Isothermal Amplification Method for microRNA Detection: Combination of a Duplex-Specific Nuclease Enzyme-Driven DNA Walker with Improved Catalytic Hairpin Assembly. Int. J. Mol. Sci. 2025, 26, 689. https://doi.org/10.3390/ijms26020689
Han Y, Han S, Ren T, Han L, Ma X, Huang L, Sun X. A Dual-Cycle Isothermal Amplification Method for microRNA Detection: Combination of a Duplex-Specific Nuclease Enzyme-Driven DNA Walker with Improved Catalytic Hairpin Assembly. International Journal of Molecular Sciences. 2025; 26(2):689. https://doi.org/10.3390/ijms26020689
Chicago/Turabian StyleHan, Yu, Shuang Han, Ting Ren, Liu Han, Xiangyu Ma, Lijing Huang, and Xin Sun. 2025. "A Dual-Cycle Isothermal Amplification Method for microRNA Detection: Combination of a Duplex-Specific Nuclease Enzyme-Driven DNA Walker with Improved Catalytic Hairpin Assembly" International Journal of Molecular Sciences 26, no. 2: 689. https://doi.org/10.3390/ijms26020689
APA StyleHan, Y., Han, S., Ren, T., Han, L., Ma, X., Huang, L., & Sun, X. (2025). A Dual-Cycle Isothermal Amplification Method for microRNA Detection: Combination of a Duplex-Specific Nuclease Enzyme-Driven DNA Walker with Improved Catalytic Hairpin Assembly. International Journal of Molecular Sciences, 26(2), 689. https://doi.org/10.3390/ijms26020689