Reference Gene Selection for RT-qPCR Normalization in Toxoplasma gondii Exposed to Broxaldine
Abstract
:1. Introduction
2. Results
2.1. Primer Specificity and Amplification Efficiency
2.2. Candidate Reference Gene Expression Analysis
2.3. Candidate Reference Gene Expression Stability Analysis
2.3.1. ∆Ct Analysis
2.3.2. BestKeeper Analysis
2.3.3. NormFinder Analysis
2.3.4. GeNorm Analysis
2.3.5. RefFinder Analysis
2.4. Verification of Reference Genes
3. Discussion
4. Materials and Methods
4.1. Culture of T. gondii and Treatment with BRO
4.2. Total RNA Extraction and Reverse Transcription
4.3. Selection of Reference Genes and Primer Design
4.4. RT-qPCR Assay
4.5. Stability Analysis of Candidate Reference Genes
4.6. Verification of Reference Genes
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nolan, T.; Hands, R.E.; Bustin, S.A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1, 1559–1582. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Solares, A.; Hall, J.R.; Xue, X.; Rise, M.L. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) for gene expression analyses. Methods Mol. Biol. 2022, 2508, 319–340. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Hua, G.; Zheng, X.; Chen, Z.; Zhang, J.; Zhuang, W.; Chen, J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken oviduct tract. Poult. Sci. 2024, 103, 103980. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Z.; Zhang, J.; Zhuang, W.; Zheng, X. Screening of reliable reference genes for the normalization of RT-qPCR in chicken gastrointestinal tract. Poult. Sci. 2023, 102, 103169. [Google Scholar] [CrossRef]
- Lin, J.; Redies, C. Histological evidence: Housekeeping genes beta-actin and GAPDH are of limited value for normalization of gene expression. Dev. Genes. Evol. 2012, 222, 369–376. [Google Scholar] [CrossRef]
- Barber, R.D.; Harmer, D.W.; Coleman, R.A.; Clark, B.J. GAPDH as a housekeeping gene: Analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol. Genomics 2005, 21, 389–395. [Google Scholar] [CrossRef]
- Lourido, S. Toxoplasma gondii . Trends Parasitol. 2019, 35, 944–945. [Google Scholar] [CrossRef]
- Cossu, G.; Preti, A.; Gyppaz, D.; Gureje, O.; Carta, M.G. Association between toxoplasmosis and bipolar disorder: A systematic review and meta-analysis. J. Psychiatr. Res. 2022, 153, 284–291. [Google Scholar] [CrossRef]
- Antczak, M.; Dzitko, K.; Dlugonska, H. Human toxoplasmosis—Searching for novel chemotherapeutics. Biomed. Pharmacother. 2016, 82, 677–684. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhai, B.; Bai, Y.; Lin, H.; Wu, L.; Luo, W.; Shi, M.; Chen, S.; Zhang, J. In vitro and in vivo activity evaluation and mode of action of broxaldine on Toxoplasma gondii. Int. J. Parasitol. Drugs Drug. Resist. 2024, 25, 100552. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, C.; Liu, Q.; Zhang, X.; Mei, X.; Zhang, T.; Ning, J. Validation and evaluation of reference genes for quantitative real-time PCR analysis in Mythimna loreyi (Lepidoptera: Noctuidae). Insects 2024, 15, 185. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Cai, Y.; Yao, J.; Zhang, Q.; He, B.; Lin, S. Reference genes selection and validation for Cinnamomum burmanni by real-time quantitative polymerase chain reaction. Int. J. Mol. Sci. 2024, 25, 3500. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ishikawa, T.; Michiue, T.; Zhu, B.L.; Guan, D.W.; Maeda, H. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: Comprehensive evaluation using geNorm, NormFinder, and BestKeeper. Int. J. Legal. Med. 2012, 126, 943–952. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, RESEARCH0034. [Google Scholar] [CrossRef]
- Zhang, K.; Fan, W.; Chen, D.; Jiang, L.; Li, Y.; Yao, Z.; Yang, Y.; Qiu, D. Selection and validation of reference genes for quantitative gene expression normalization in Taxus spp. Sci. Rep. 2020, 10, 22205. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Y.; Wang, X.; Wang, X.; Li, R.; Lu, C.; Lan, X.; Chen, Y. Selection and validation of reference genes for RT-qPCR analysis in tibetan medicinal plant Saussurea Laniceps callus under abiotic stresses and hormone treatments. Genes 2022, 13, 904. [Google Scholar] [CrossRef]
- de Jonge, H.J.; Fehrmann, R.S.; de Bont, E.S.; Hofstra, R.M.; Gerbens, F.; Kamps, W.A.; de Vries, E.G.; van der Zee, A.G.; Te, M.G.; ter Elst, A. Evidence based selection of housekeeping genes. PLoS ONE 2007, 2, e898. [Google Scholar] [CrossRef]
- Eisenberg, E.; Levanon, E.Y. Human housekeeping genes, revisited. Trends Genet. 2013, 29, 569–574. [Google Scholar] [CrossRef]
- Chatelain, P.; Blanchard, C.; Astier, J.; Klinguer, A.; Wendehenne, D.; Jeandroz, S.; Rosnoblet, C. Reliable reference genes and abiotic stress marker genes in Klebsormidium nitens. Sci. Rep. 2022, 12, 18988. [Google Scholar] [CrossRef]
- Slobodkin, M.R.; Elazar, Z. The Atg8 family: Multifunctional ubiquitin-like key regulators of autophagy. Essays. Biochem. 2013, 55, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Leveque, M.F.; Berry, L.; Cipriano, M.J.; Nguyen, H.; Striepen, B.; Besteiro, S. Autophagy-related protein ATG8 has a noncanonical function for apicoplast inheritance in Toxoplasma gondii. mBio 2015, 6, e01446-15. [Google Scholar] [CrossRef] [PubMed]
- Asady, B.; Samples, V.; Romano, J.D.; Levitskaya, J.; Lige, B.; Khare, P.; Le, A.; Coppens, I. Function and regulation of a steroidogenic CYP450 enzyme in the mitochondrion of Toxoplasma gondii. PLoS Pathog. 2023, 19, e1011566. [Google Scholar] [CrossRef] [PubMed]
- Huet, D.; Rajendran, E.; van Dooren, G.G.; Lourido, S. Identification of cryptic subunits from an apicomplexan ATP synthase. Elife 2018, 7, e38097. [Google Scholar] [CrossRef] [PubMed]
- Onguka, O.; Babin, B.M.; Lakemeyer, M.; Foe, I.T.; Amara, N.; Terrell, S.M.; Lum, K.M.; Cieplak, P.; Niphakis, M.J.; Long, J.Z.; et al. Toxoplasma gondii serine hydrolases regulate parasite lipid mobilization during growth and replication within the host. Cell Chem. Biol. 2021, 28, 1501–1513.e5. [Google Scholar] [CrossRef]
- Charital, S.; Shunmugam, S.; Dass, S.; Alazzi, A.M.; Arnold, C.; Katris, N.J.; Duley, S.; Quansah, N.A.; Pierrel, F.; Govin, J.; et al. The acyl-CoA synthetase Tg ACS1 allows neutral lipid metabolism and extracellular motility in Toxoplasma gondii through relocation via its peroxisomal targeting sequence (PTS) under low nutrient conditions. mBio 2024, 15, e0042724. [Google Scholar] [CrossRef]
- Nolan, S.J.; Romano, J.D.; Coppens, I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017, 13, e1006362. [Google Scholar] [CrossRef]
- Nolan, S.J.; Romano, J.D.; Kline, J.T.; Coppens, I. Novel approaches to kill Toxoplasma gondii by exploiting the uncontrolled uptake of unsaturated fatty acids and vulnerability to lipid storage inhibition of the parasite. Antimicrob. Agents. Chemother. 2018, 62, e00347-18. [Google Scholar] [CrossRef]
- Li, M.; Sang, X.; Zhang, X.; Li, X.; Feng, Y.; Yang, N.; Jiang, T. A metabolomic and transcriptomic study revealed the mechanisms of lumefantrine inhibition of Toxoplasma gondii. Int. J. Mol. Sci. 2023, 24, 4902. [Google Scholar] [CrossRef]
- Mayoral, J.; Di Cristina, M.; Carruthers, V.B.; Weiss, L.M. Toxoplasma gondii: Bradyzoite differentiation in vitro and in vivo. Methods Mol. Biol. 2020, 2071, 269–282. [Google Scholar] [CrossRef]
- Biddau, M.; Bouchut, A.; Major, J.; Saveria, T.; Tottey, J.; Oka, O.; Van-Lith, M.; Jennings, K.E.; Ovciarikova, J.; DeRocher, A.; et al. Two essential Thioredoxins mediate apicoplast biogenesis, protein import, and gene expression in Toxoplasma gondii. PLoS Pathog. 2018, 14, e1006836. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.M.; de Sa, P.H.; Castro, T.L.; Carvalho, R.D.; Pinto, A.; Gil, D.J.; Bagano, P.; Bastos, B.; Costa, L.F.; Meyer, R.; et al. Reference genes for RT-qPCR studies in Corynebacterium pseudotuberculosis identified through analysis of RNA-seq data. Antonie. Van. Leeuwenhoek. 2014, 106, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene | Standard Curve | Efficiency | Correlation Coefficient (R2) |
---|---|---|---|
TGME49_220950 | y = −3.553x + 26.75 | 91.18% | 0.999 |
TGME49_205470 | y = −3.319x + 30.79 | 100.12% | 0.995 |
TGME49_235930 | y = −3.462x + 31.07 | 94.47% | 0.997 |
TGME49_212300 | y = −3.445x + 32.96 | 95.11% | 0.998 |
TGME49_226020 | y = −3.364x + 31.19 | 98.27% | 0.998 |
TGME49_289690 | y = −3.243x + 31.46 | 103.40% | 0.992 |
TGME49_249180 | y = −3.507x + 33.73 | 92.82% | 0.994 |
TGME49_316400 | y = −3.428x + 30.92 | 95.76% | 0.995 |
TGME49_209030 | y = −3.276x + 28.69 | 101.95% | 0.999 |
TGME49_247220 | y = −3.217 + 32.36 | 104.57% | 0.996 |
Gene | Control | BRO 1 μg/mL | BRO 2 μg/mL | BRO 4 μg/mL | Total |
---|---|---|---|---|---|
TGME49_289690 | 0.12 | 0.26 | 0.17 | 0.20 | 0.40 |
TGME49_247220 | 0.07 | 0.18 | 0.19 | 0.19 | 0.33 |
TGME49_209030 | 0.14 | 0.18 | 0.14 | 0.24 | 0.34 |
TGME49_220950 | 0.10 | 0.20 | 0.19 | 0.22 | 0.39 |
TGME49_316400 | 0.09 | 0.20 | 0.16 | 0.21 | 0.83 |
TGME49_205470 | 0.06 | 0.28 | 0.24 | 0.18 | 0.37 |
TGME49_249180 | 0.14 | 0.19 | 0.19 | 0.79 | 0.55 |
TGME49_212300 | 0.11 | 0.20 | 0.18 | 0.23 | 0.42 |
TGME49_235930 | 0.09 | 0.20 | 0.21 | 0.18 | 0.34 |
TGME49_226020 | 0.10 | 0.54 | 0.14 | 0.19 | 0.46 |
Gene | Control | BRO 1 μg/mL | BRO 2 μg/mL | BRO 4 μg/mL | Total |
---|---|---|---|---|---|
TGME49_289690 | 0.26 | 0.10 | 1.04 | 0.53 | 1.04 |
TGME49_247220 | 0.32 | 0.21 | 0.91 | 0.56 | 0.90 |
TGME49_209030 | 0.38 | 0.22 | 1.05 | 0.71 | 1.02 |
TGME49_220950 | 0.31 | 0.29 | 1.13 | 0.51 | 0.97 |
TGME49_316400 | 0.35 | 0.19 | 1.08 | 0.68 | 1.54 |
TGME49_205470 | 0.31 | 0.37 | 0.86 | 0.60 | 1.04 |
TGME49_249180 | 0.42 | 0.28 | 1.13 | 0.72 | 1.11 |
TGME49_212300 | 0.39 | 0.31 | 1.04 | 0.68 | 0.85 |
TGME49_235930 | 0.32 | 0.31 | 0.88 | 0.62 | 0.94 |
TGME49_226020 | 0.31 | 0.42 | 1.02 | 0.63 | 0.89 |
Gene | Control | BRO 1 μg/mL | BRO 2 μg/mL | BRO 4 μg/mL | Total |
---|---|---|---|---|---|
TGME49_289690 | 0.10 | 0.18 | 0.11 | 0.09 | 0.24 |
TGME49_247220 | 0.04 | 0.04 | 0.15 | 0.04 | 0.12 |
TGME49_209030 | 0.12 | 0.05 | 0.05 | 0.18 | 0.05 |
TGME49_220950 | 0.08 | 0.14 | 0.16 | 0.08 | 0.26 |
TGME49_316400 | 0.04 | 0.11 | 0.11 | 0.11 | 0.79 |
TGME49_205470 | 0.03 | 0.21 | 0.21 | 0.01 | 0.15 |
TGME49_249180 | 0.12 | 0.11 | 0.15 | 0.79 | 0.44 |
TGME49_212300 | 0.08 | 0.12 | 0.12 | 0.18 | 0.33 |
TGME49_235930 | 0.05 | 0.11 | 0.18 | 0.07 | 0.12 |
TGME49_226020 | 0.07 | 0.52 | 0.01 | 0.04 | 0.35 |
Gene | FPKM | CV (%) | MFC | |||
---|---|---|---|---|---|---|
Control | BRO 1 μg/mL | BRO 2 μg/mL | BRO 4 μg/mL | |||
TGME49_220950 | 795.5 | 809.98 | 810.17 | 828.2 | 1.65 | 1.04 |
TGME49_205470 | 255.29 | 263.88 | 269.57 | 277.13 | 3.46 | 1.09 |
TGME49_235930 | 170.62 | 177.18 | 182.85 | 182.87 | 3.26 | 1.07 |
TGME49_212300 | 247.93 | 257.77 | 260.49 | 268.05 | 3.22 | 1.08 |
TGME49_226020 | 365.64 | 372.79 | 381.07 | 391.27 | 2.92 | 1.07 |
TGME49_247220 | 545.4 | 569.4 | 583.65 | 594.77 | 3.72 | 1.09 |
TGME49_249180 | 58.97 | 60.57 | 63.02 | 63.5 | 3.46 | 1.08 |
TGME49_316400 (TUBA1) | 1180.95 | 594.29 | 318.97 | 264 | 71.22 | 4.47 |
TGME49_209030 (ACT1) | 513.44 | 402.78 | 304.58 | 294.56 | 26.97 | 1.74 |
TGME49_289690 (GAPDH1) | 390.98 | 311.95 | 289.81 | 384.62 | 14.83 | 1.35 |
Gene | Gene Description | Primer Sequences (5′→3′) | Product Size (bp) |
---|---|---|---|
TGME49_220950 | mitochondrial association factor 1 (MAF1) | F: CGGCAACCTGAACAACAACG R: CCTTGCACTGGGTACTGCTG | 162 |
TGME49_205470 | translation elongation factor 2 family protein, putative | F: ATCATGGACCCGATCTGCAC R: TCCCTGTCGTCACCCTTGA | 100 |
TGME49_235930 | domain K- type RNA binding proteins family protein | F: TATCCTTGGCTCTGGCGGT R: GCTGCATGACGAAACCGATG | 158 |
TGME49_212300 | dense granule protein GRA32 | F: GGAATCGGAAGGGGCGTATT R: GCAGGGCTTGGAACTTGTTG | 72 |
TGME49_226020 | transporter, major facilitator family protein | F: TGCTTGCGGGATATTGGCT R: TGCGAAGTAGCCTCCCATTG | 125 |
TGME49_289690 | glyceraldehyde-3-phosphate dehydrogenase GAPDH1 | F: ATTTTGCTTGGGATTCGAGGA R: TGCAGGGTAACGATCAAAAAATG | 93 |
TGME49_249180 | bifunctional dihydrofolate reductase-thymidylate synthase | F: CAGACTACACAGGTCAGGGC R: CACAACAAGTGACAAGGCGG | 145 |
TGME49_316400 | alpha tubulin TUBA1 | F: GCCAAGTGTGATCCTCGTCA R: GGCTGGTAGTTGATACCGCA | 170 |
TGME49_209030 | actin ACT1 | F: TCGGAATGGAGGAGAAGGACTGC R: AGTTCGTTGTAGAAGGTGTGATGCC | 148 |
TGME49_247220 | udix-type motif 9 isoform a family protein | F: AATGGGAGACTTCAGGTGGC R: GCGTAACTATGAGCGGTCCA | 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Bai, Y.; Wang, W.; Wang, Q.; Chen, S.; Zhang, J. Reference Gene Selection for RT-qPCR Normalization in Toxoplasma gondii Exposed to Broxaldine. Int. J. Mol. Sci. 2024, 25, 11403. https://doi.org/10.3390/ijms252111403
Qiu Y, Bai Y, Wang W, Wang Q, Chen S, Zhang J. Reference Gene Selection for RT-qPCR Normalization in Toxoplasma gondii Exposed to Broxaldine. International Journal of Molecular Sciences. 2024; 25(21):11403. https://doi.org/10.3390/ijms252111403
Chicago/Turabian StyleQiu, Yanhua, Yubin Bai, Weiwei Wang, Qing Wang, Shulin Chen, and Jiyu Zhang. 2024. "Reference Gene Selection for RT-qPCR Normalization in Toxoplasma gondii Exposed to Broxaldine" International Journal of Molecular Sciences 25, no. 21: 11403. https://doi.org/10.3390/ijms252111403
APA StyleQiu, Y., Bai, Y., Wang, W., Wang, Q., Chen, S., & Zhang, J. (2024). Reference Gene Selection for RT-qPCR Normalization in Toxoplasma gondii Exposed to Broxaldine. International Journal of Molecular Sciences, 25(21), 11403. https://doi.org/10.3390/ijms252111403