Gene Therapy of Sphingolipid Metabolic Disorders
Abstract
:1. Introduction
2. Gene Therapy for Sphingolipidoses
3. Adeno-Associated Viruses in Gene Therapy
3.1. AAV-Mediated Gene Therapy for GM1-Gangliosidosis
3.2. AAV-Mediated Gene Therapy for GM2-Gangliosidoses
3.3. AAV-Mediated Gene Therapy for Fabry Disease
3.4. AAV-Mediated Gene Therapy for Gaucher Disease
3.5. AAV-Mediated Gene Therapy for Metachromatic Leukodystrophy
3.6. AAV-Mediated Gene Therapy for Krabbe Disease
4. Lentiviruses in Gene Therapy
4.1. LV-Mediated Gene Therapy for Fabry Disease
4.2. LV-Mediated Gene Therapy for Gaucher Disease
4.3. LV-Mediated Gene Therapy for Metachromatic Leukodystrophy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Platt, F.M.; d’Azzo, A.; Davidson, B.L.; Neufeld, E.F.; Tifft, C.J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 2018, 4, 27. [Google Scholar] [CrossRef]
- Martina, J.A.; Raben, N.; Puertollano, R. SnapShot: Lysosomal Storage Diseases. Cell 2020, 180, 602–602.e1. [Google Scholar] [CrossRef] [PubMed]
- Laqtom, N.N.; Dong, W.; Medoh, U.N.; Cangelosi, A.L.; Dharamdasani, V.; Chan, S.H.; Kunchok, T.; Lewis, C.A.; Heinze, I.; Tang, R.; et al. CLN3 is required for the clearance of glycerophosphodiesters from lysosomes. Nature 2022, 609, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Kuk, A.C.Y.; Ding, M.; Chin, C.F.; Galam, D.L.A.; Nah, J.M.; Tan, B.C.; Yeo, H.L.; Chua, G.L.; Benke, P.I.; et al. Spns1 is a lysophospholipid transporter mediating lysosomal phospholipid salvage. Proc. Natl. Acad. Sci. USA 2022, 119, e2210353119. [Google Scholar] [CrossRef]
- Scharenberg, S.G.; Dong, W.; Nyame, K.; Levin-Konigsberg, R.; Krishnan, A.R.; Rawat, E.S.; Spees, K.; Bassik, M.C.; Abu-Remaileh, M. A lysosomal lipid transport pathway that enables cell survival under choline limitation. Biorxiv 2022. [Google Scholar] [CrossRef]
- Santos, R.; Amaral, O. Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy. Int. J. Mol. Sci. 2019, 20, 5897. [Google Scholar] [CrossRef]
- Rha, A.K.; Maguire, A.S.; Martin, D.R. GM1 Gangliosidosis: Mechanisms and Management. Appl. Clin. Genet 2021, 14, 209–233. [Google Scholar] [CrossRef] [PubMed]
- Solovyeva, V.V.; Shaimardanova, A.A.; Chulpanova, D.S.; Kitaeva, K.V.; Chakrabarti, L.; Rizvanov, A.A. New Approaches to Tay-Sachs Disease Therapy. Front. Physiol. 2018, 9, 1663. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Chulpanova, D.S.; Solovyeva, V.V.; Aimaletdinov, A.M.; Rizvanov, A.A. Functionality of a bicistronic construction containing HEXA and HEXB genes encoding beta-hexosaminidase A for cell-mediated therapy of GM2 gangliosidoses. Neural. Regen Res. 2022, 17, 122–129. [Google Scholar] [CrossRef]
- Xiao, C.; Tifft, C.; Toro, C. Sandhoff Disease. In GeneReviews((R)); Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Tavasoli, A.R.; Parvaneh, N.; Ashrafi, M.R.; Rezaei, Z.; Zschocke, J.; Rostami, P. Clinical presentation and outcome in infantile Sandhoff disease: A case series of 25 patients from Iranian neurometabolic bioregistry with five novel mutations. Orphanet J. Rare Dis. 2018, 13, 130. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Chulpanova, D.S.; Solovyeva, V.V.; Garanina, E.E.; Salafutdinov, I.I.; Laikov, A.V.; Kursenko, V.V.; Chakrabarti, L.; Zakharova, E.Y.; Bukina, T.M.; et al. Serum Cytokine Profile, Beta-Hexosaminidase A Enzymatic Activity and GM(2) Ganglioside Levels in the Plasma of a Tay-Sachs Disease Patient after Cord Blood Cell Transplantation and Curcumin Administration: A Case Report. Life 2021, 11, 1007. [Google Scholar] [CrossRef]
- Germain, D.P. Fabry disease. Orphanet J. Rare Dis. 2010, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int. J. Mol. Sci. 2017, 18, 441. [Google Scholar] [CrossRef] [PubMed]
- Pastores, G.M.; Hughes, D.A. Gaucher Disease. In GeneReviews((R)); Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Castillon, G.; Chang, S.C.; Moride, Y. Global Incidence and Prevalence of Gaucher Disease: A Targeted Literature Review. J. Clin. Med. 2022, 12, 85. [Google Scholar] [CrossRef]
- Liaqat, K.; Hussain, S.; Acharya, A.; Nasir, A.; Bharadwaj, T.; Ansar, M.; Basit, S.; Schrauwen, I.; Ahmad, W.; Leal, S.M. Phenotype Expansion for Atypical Gaucher Disease Due to Homozygous Missense PSAP Variant in a Large Consanguineous Pakistani Family. Genes 2022, 13, 662. [Google Scholar] [CrossRef]
- Kim, E.N.; Do, H.S.; Jeong, H.; Kim, T.; Heo, S.H.; Kim, Y.M.; Cheon, C.K.; Lee, Y.; Choi, Y.; Choi, I.H.; et al. Identification of a novel therapeutic target underlying atypical manifestation of Gaucher disease. Clin. Transl. Med. 2022, 12, e862. [Google Scholar] [CrossRef]
- Akash, A.; Singh, R.K.; Akash, A. Grabbing Gaucher’s: A Case Study of an Atypical Case of Gaucher,S Disease. J. Assoc. Physicians India 2020, 68, 73. [Google Scholar] [PubMed]
- Harzer, K.; Paton, B.C.; Poulos, A.; Kustermann-Kuhn, B.; Roggendorf, W.; Grisar, T.; Popp, M. Sphingolipid activator protein deficiency in a 16-week-old atypical Gaucher disease patient and his fetal sibling: Biochemical signs of combined sphingolipidoses. Eur. J. Pediatr. 1989, 149, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Shaimardanova, A.A.; Chulpanova, D.S.; Solovyeva, V.V.; Mullagulova, A.I.; Kitaeva, K.V.; Allegrucci, C.; Rizvanov, A.A. Metachromatic Leukodystrophy: Diagnosis, Modeling, and Treatment Approaches. Front. Med. 2020, 7, 576221. [Google Scholar] [CrossRef]
- Kuchar, L.; Ledvinova, J.; Hrebicek, M.; Myskova, H.; Dvorakova, L.; Berna, L.; Chrastina, P.; Asfaw, B.; Elleder, M.; Petermoller, M.; et al. Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): Report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am. J. Med. Genet. A 2009, 149A, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Madaan, P.; Jauhari, P.; Chakrabarty, B.; Kumar, A.; Gulati, S. Saposin B-Deficient Metachromatic Leukodystrophy Mimicking Acute Flaccid Paralysis. Neuropediatrics 2019, 50, 318–321. [Google Scholar] [CrossRef]
- Neimann, N.; Pierson, M.; Tridon, P.; Grignon, G.; Marchal, C.; Floquet, J.; Vidailhet, M.; Humbel, R. [Atypical forms of metachromatic leukodystrophy]. Arch. Fr. Pediatr. 1968, 25, 957. [Google Scholar] [PubMed]
- Hordeaux, J.; Jeffrey, B.A.; Jian, J.; Choudhury, G.R.; Michalson, K.; Mitchell, T.W.; Buza, E.L.; Chichester, J.; Dyer, C.; Bagel, J.; et al. Efficacy and Safety of a Krabbe Disease Gene Therapy. Hum. Gene Ther. 2022, 33, 499–517. [Google Scholar] [CrossRef] [PubMed]
- Wenger, D.A.; Rafi, M.A.; Luzi, P. Krabbe disease: One Hundred years from the bedside to the bench to the bedside. J. Neurosci. Res. 2016, 94, 982–989. [Google Scholar] [CrossRef]
- Potter, G.B.; Petryniak, M.A. Neuroimmune mechanisms in Krabbe’s disease. J. Neurosci. Res. 2016, 94, 1341–1348. [Google Scholar] [CrossRef] [PubMed]
- Schrier Vergano, S.A.; Kanungo, S.; Arnold, G. Making Decisions About Krabbe Disease Newborn Screening. Pediatrics 2022, 149, e2021053175. [Google Scholar] [CrossRef]
- Yagi, T.; Matsuda, J.; Takikita, S.; Mohri, I.; Suzuki, K.; Suzuki, K. Comparative clinico-pathological study of saposin-A-deficient (SAP-A-/-) and Twitcher mice. J. Neuropathol. Exp. Neurol. 2004, 63, 721–734. [Google Scholar] [CrossRef]
- Nicita, F.; Stregapede, F.; Deodato, F.; Pizzi, S.; Martinelli, S.; Pagliara, D.; Aiello, C.; Cumbo, F.; Piemonte, F.; D’Amico, J.; et al. “Atypical” Krabbe disease in two siblings harboring biallelic GALC mutations including a deep intronic variant. Eur. J. Hum. Genet 2022, 30, 984–988. [Google Scholar] [CrossRef]
- Schuchman, E.H.; Desnick, R.J. Types A and B Niemann-Pick disease. Mol. Genet. Metab. 2017, 120, 27–33. [Google Scholar] [CrossRef]
- Vanier, M.T. Niemann-Pick diseases. Handb. Clin. Neurol. 2013, 113, 1717–1721. [Google Scholar] [CrossRef]
- Schuchman, E.H.; Wasserstein, M.P. Types A and B Niemann-Pick Disease. Pediatr. Endocrinol. Rev. 2016, 13 (Suppl. S1), 674–681. [Google Scholar] [PubMed]
- Al-Naimi, A.; Toma, H.; Hamad, S.G.; Ben Omran, T. Farber Disease Mimicking Juvenile Idiopathic Arthritis: The First Reported Case in Qatar and Review of the Literature. Case Rep. Genet. 2022, 2022, 2555235. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.P.S.; Amintas, S.; Levade, T.; Medin, J.A. Acid ceramidase deficiency: Farber disease and SMA-PME. Orphanet J. Rare Dis. 2018, 13, 121. [Google Scholar] [CrossRef] [PubMed]
- Mhatre, S.; Muranjan, M.; Karande, S.; Balaji, H. Novel manifestations of Farber disease mimicking neuronopathic Gaucher disease. BMJ Case Rep. 2021, 14, e240742. [Google Scholar] [CrossRef] [PubMed]
- Motta, M.; Tatti, M.; Furlan, F.; Celato, A.; Di Fruscio, G.; Polo, G.; Manara, R.; Nigro, V.; Tartaglia, M.; Burlina, A.; et al. Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin. Genet. 2016, 90, 220–229. [Google Scholar] [CrossRef]
- Kim, S.U. Lysosomal storage diseases: Stem cell-based cell- and gene-therapy. Cell Transpl. 2014. [Google Scholar] [CrossRef]
- Lund, T.C. Hematopoietic stem cell transplant for lysosomal storage diseases. Pediatr. Endocrinol. Rev. 2013, 11 (Suppl. S1), 91–98. [Google Scholar]
- Shaimardanova, A.A.; Chulpanova, D.S.; Mullagulova, A.I.; Afawi, Z.; Gamirova, R.G.; Solovyeva, V.V.; Rizvanov, A.A. Gene and Cell Therapy for Epilepsy: A Mini Review. Front. Mol. Neurosci. 2022, 15, 868531. [Google Scholar] [CrossRef]
- Biffi, A. Hematopoietic Stem Cell Gene Therapy for Storage Disease: Current and New Indications. Mol. Ther. 2017, 25, 1155–1162. [Google Scholar] [CrossRef]
- Valayannopoulos, V. Enzyme replacement therapy and substrate reduction therapy in lysosomal storage disorders with neurological expression. Handb. Clin. Neurol. 2013, 113, 1851–1857. [Google Scholar] [CrossRef]
- Diaz, G.A.; Jones, S.A.; Scarpa, M.; Mengel, K.E.; Giugliani, R.; Guffon, N.; Batsu, I.; Fraser, P.A.; Li, J.; Zhang, Q.; et al. One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency. Genet. Med. 2021, 23, 1543–1550. [Google Scholar] [CrossRef]
- Coutinho, M.F.; Santos, J.I.; Alves, S. Less Is More: Substrate Reduction Therapy for Lysosomal Storage Disorders. Int. J. Mol. Sci. 2016, 17, 1065. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A.; Deegan, P.; Giraldo, P.; Goker-Alpan, O.; Lau, H.; Lukina, E.; Revel-Vilk, S.; Scarpa, M.; Botha, J.; Gadir, N.; et al. Switching between Enzyme Replacement Therapies and Substrate Reduction Therapies in Patients with Gaucher Disease: Data from the Gaucher Outcome Survey (GOS). J. Clin. Med. 2022, 11, 5158. [Google Scholar] [CrossRef]
- Marshall, J.; Nietupski, J.B.; Park, H.; Cao, J.; Bangari, D.S.; Silvescu, C.; Wilper, T.; Randall, K.; Tietz, D.; Wang, B.; et al. Substrate Reduction Therapy for Sandhoff Disease through Inhibition of Glucosylceramide Synthase Activity. Mol. Ther. 2019, 27, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.E.; Al-Gazali, L.; Al-Jasmi, F.; Ali, B.R. Pharmaceutical Chaperones and Proteostasis Regulators in the Therapy of Lysosomal Storage Disorders: Current Perspective and Future Promises. Front. Pharm. 2017, 8, 448. [Google Scholar] [CrossRef]
- Suzuki, Y. Chemical chaperone therapy for GM1-gangliosidosis. Cell Mol. Life Sci. 2008, 65, 351–353. [Google Scholar] [CrossRef]
- Chiricozzi, E.; Niemir, N.; Aureli, M.; Magini, A.; Loberto, N.; Prinetti, A.; Bassi, R.; Polchi, A.; Emiliani, C.; Caillaud, C.; et al. Chaperone therapy for GM2 gangliosidosis: Effects of pyrimethamine on beta-hexosaminidase activity in Sandhoff fibroblasts. Mol. Neurobiol. 2014, 50, 159–167. [Google Scholar] [CrossRef]
- Weidemann, F.; Jovanovic, A.; Herrmann, K.; Vardarli, I. Chaperone Therapy in Fabry Disease. Int. J. Mol. Sci. 2022, 23, 1887. [Google Scholar] [CrossRef] [PubMed]
- Countee, R.W. Extrinsic neural influences on gastrointestinal motility. Am. Surg. 1977, 43, 621–626. [Google Scholar] [PubMed]
- Fumagalli, F.; Calbi, V.; Natali Sora, M.G.; Sessa, M.; Baldoli, C.; Rancoita, P.M.V.; Ciotti, F.; Sarzana, M.; Fraschini, M.; Zambon, A.A.; et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: Long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet 2022, 399, 372–383. [Google Scholar] [CrossRef]
- van der Veen, S.J.; Hollak, C.E.M.; van Kuilenburg, A.B.P.; Langeveld, M. Developments in the treatment of Fabry disease. J. Inherit. Metab. Dis. 2020, 43, 908–921. [Google Scholar] [CrossRef] [Green Version]
- Cachon-Gonzalez, M.B.; Zaccariotto, E.; Cox, T.M. Genetics and Therapies for GM2 Gangliosidosis. Curr. Gene Ther. 2018, 18, 68–89. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, S.; Ferrarese, M.; Marchi, S.; Pinton, P.; Pinotti, M.; Bernardi, F.; Branchini, A. Translational readthrough of GLA nonsense mutations suggests dominant-negative effects exerted by the interaction of wild-type and missense variants. RNA Biol. 2020, 17, 254–263. [Google Scholar] [CrossRef]
- Gomez-Grau, M.; Garrido, E.; Cozar, M.; Rodriguez-Sureda, V.; Dominguez, C.; Arenas, C.; Gatti, R.A.; Cormand, B.; Grinberg, D.; Vilageliu, L. Evaluation of Aminoglycoside and Non-Aminoglycoside Compounds for Stop-Codon Readthrough Therapy in Four Lysosomal Storage Diseases. PLoS ONE 2015, 10, e0135873. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.R.A.; Saftig, P. Lysosomal storage disorders—Challenges, concepts and avenues for therapy: Beyond rare diseases. J. Cell Sci. 2019, 132, jcs221739. [Google Scholar] [CrossRef]
- Fernandez-Pereira, C.; San Millan-Tejado, B.; Gallardo-Gomez, M.; Perez-Marquez, T.; Alves-Villar, M.; Melcon-Crespo, C.; Fernandez-Martin, J.; Ortolano, S. Therapeutic Approaches in Lysosomal Storage Diseases. Biomolecules 2021, 11, 1775. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Solovyeva, V.V.; Chulpanova, D.S.; James, V.; Kitaeva, K.V.; Rizvanov, A.A. Extracellular vesicles in the diagnosis and treatment of central nervous system diseases. Neural. Regen. Res. 2020, 15, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Issa, S.S.; Shaimardanova, A.A.; Valiullin, V.V.; Rizvanov, A.A.; Solovyeva, V.V. Mesenchymal Stem Cell-Based Therapy for Lysosomal Storage Diseases and Other Neurodegenerative Disorders. Front. Pharm. 2022, 13, 859516. [Google Scholar] [CrossRef]
- Yasuda, M.; Huston, M.W.; Pagant, S.; Gan, L.; St Martin, S.; Sproul, S.; Richards, D.; Ballaron, S.; Hettini, K.; Ledeboer, A.; et al. AAV2/6 Gene Therapy in a Murine Model of Fabry Disease Results in Supraphysiological Enzyme Activity and Effective Substrate Reduction. Mol. Ther. Methods Clin. Dev. 2020, 18, 607–619. [Google Scholar] [CrossRef]
- Ziegler, R.J.; Cherry, M.; Barbon, C.M.; Li, C.; Bercury, S.D.; Armentano, D.; Desnick, R.J.; Cheng, S.H. Correction of the biochemical and functional deficits in fabry mice following AAV8-mediated hepatic expression of alpha-galactosidase A. Mol. Ther. 2007, 15, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Chulpanova, D.S.; Shaimardanova, A.A.; Ponomarev, A.S.; Elsheikh, S.; Rizvanov, A.A.; Solovyeva, V.V. Current Strategies for the Gene Therapy of Autosomal Recessive Congenital Ichthyosis and Other Types of Inherited Ichthyosis. Int. J. Mol. Sci. 2022, 23, 2506. [Google Scholar] [CrossRef]
- Dunbar, C.E.; Kohn, D.B.; Schiffmann, R.; Barton, N.W.; Nolta, J.A.; Esplin, J.A.; Pensiero, M.; Long, Z.; Lockey, C.; Emmons, R.V.; et al. Retroviral transfer of the glucocerebrosidase gene into CD34+ cells from patients with Gaucher disease: In vivo detection of transduced cells without myeloablation. Hum. Gene Ther. 1998, 9, 2629–2640. [Google Scholar] [CrossRef]
- Samaranch, L.; Perez-Canamas, A.; Soto-Huelin, B.; Sudhakar, V.; Jurado-Arjona, J.; Hadaczek, P.; Avila, J.; Bringas, J.R.; Casas, J.; Chen, H.; et al. Adeno-associated viral vector serotype 9-based gene therapy for Niemann-Pick disease type A. Sci. Transl. Med. 2019, 11, eaat3738. [Google Scholar] [CrossRef]
- Liu, S.; Ma, W.; Feng, Y.; Zhang, Y.; Jia, X.; Tang, C.; Tang, F.; Wu, X.; Huang, Y. AAV9-coGLB1 Improves Lysosomal Storage and Rescues Central Nervous System Inflammation in a Mutant Mouse Model of GM1 Gangliosidosis. Curr. Gene Ther. 2022, 22, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Hocquemiller, M.; Giersch, L.; Mei, X.; Gross, A.L.; Randle, A.N.; Gray-Edwards, H.L.; Hudson, J.A.; Todeasa, S.; Stoica, L.; Martin, D.R.; et al. AAVrh10 vector corrects pathology in animal models of GM1 gangliosidosis and achieves widespread distribution in the CNS of nonhuman primates. Mol. Ther. Methods Clin. Dev. 2022, 27, 281–292. [Google Scholar] [CrossRef]
- Hinderer, C.; Nosratbakhsh, B.; Katz, N.; Wilson, J.M. A Single Injection of an Optimized Adeno-Associated Viral Vector into Cerebrospinal Fluid Corrects Neurological Disease in a Murine Model of GM1 Gangliosidosis. Hum. Gene Ther. 2020, 31, 1169–1177. [Google Scholar] [CrossRef]
- Kotterman, M.; Whittlesey, K.; Brooks, G.; Croze, R.; Schmitt, C.; Szymanski, P.; Nye, J.; Quezada, M.; Beliakoff, G.; Johnson, L.; et al. Novel cardiotropic AAV variant C102 vectors show superior gene delivery & reduced immunogenicity in non-human primates, transduction of human cardiomyocytes, & correction of Fabry disease phenotype. Eur. Heart J. 2019, 40, ehz748-0278. [Google Scholar] [CrossRef]
- Hughes, D.A.; Patel, N.; Kinch, R.; Dronfield, L.; Short, G.; Sheridan, R.; Kia, A.; Jeyakumar, J.; Corbau, R.; Nathwani, A. First-in-human study of a liver-directed AAV gene therapy (FLT190) in Fabry disease. Mol. Genet. Metab. 2020, 129, S77–S78. [Google Scholar] [CrossRef]
- Piguet, F.; Sondhi, D.; Piraud, M.; Fouquet, F.; Hackett, N.R.; Ahouansou, O.; Vanier, M.T.; Bieche, I.; Aubourg, P.; Crystal, R.G.; et al. Correction of brain oligodendrocytes by AAVrh.10 intracerebral gene therapy in metachromatic leukodystrophy mice. Hum. Gene Ther. 2012, 23, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Sondhi, D.; Johnson, L.; Purpura, K.; Monette, S.; Souweidane, M.M.; Kaplitt, M.G.; Kosofsky, B.; Yohay, K.; Ballon, D.; Dyke, J.; et al. Long-term expression and safety of administration of AAVrh.10hCLN2 to the brain of rats and nonhuman primates for the treatment of late infantile neuronal ceroid lipofuscinosis. Hum. Gene Ther. Methods 2012, 23, 324–335. [Google Scholar] [CrossRef]
- Colle, M.A.; Piguet, F.; Bertrand, L.; Raoul, S.; Bieche, I.; Dubreil, L.; Sloothaak, D.; Bouquet, C.; Moullier, P.; Aubourg, P.; et al. Efficient intracerebral delivery of AAV5 vector encoding human ARSA in non-human primate. Hum. Mol. Genet 2010, 19, 147–158. [Google Scholar] [CrossRef] [Green Version]
- i Dali, C.; Hanson, L.G.; Barton, N.W.; Fogh, J.; Nair, N.; Lund, A.M. Brain N-acetylaspartate levels correlate with motor function in metachromatic leukodystrophy. Neurology 2010, 75, 1896–1903. [Google Scholar] [CrossRef] [PubMed]
- Zerah, M.; Piguet, F.; Colle, M.A.; Raoul, S.; Deschamps, J.Y.; Deniaud, J.; Gautier, B.; Toulgoat, F.; Bieche, I.; Laurendeau, I.; et al. Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates. Hum. Gene Ther. Clin. Dev. 2015, 26, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Bascou, N.; DeRenzo, A.; Poe, M.D.; Escolar, M.L. A prospective natural history study of Krabbe disease in a patient cohort with onset between 6 months and 3 years of life. Orphanet J. Rare Dis. 2018, 13, 126. [Google Scholar] [CrossRef] [PubMed]
- Beltran-Quintero, M.L.; Bascou, N.A.; Poe, M.D.; Wenger, D.A.; Saavedra-Matiz, C.A.; Nichols, M.J.; Escolar, M.L. Early progression of Krabbe disease in patients with symptom onset between 0 and 5 months. Orphanet J. Rare Dis. 2019, 14, 46. [Google Scholar] [CrossRef]
- Bradbury, A.M.; Rafi, M.A.; Bagel, J.H.; Brisson, B.K.; Marshall, M.S.; Pesayco Salvador, J.; Jiang, X.; Swain, G.P.; Prociuk, M.L.; PA, O.D.; et al. AAVrh10 Gene Therapy Ameliorates Central and Peripheral Nervous System Disease in Canine Globoid Cell Leukodystrophy (Krabbe Disease). Hum. Gene Ther. 2018, 29, 785–801. [Google Scholar] [CrossRef]
- Escolar, M.L.; Poe, M.D.; Provenzale, J.M.; Richards, K.C.; Allison, J.; Wood, S.; Wenger, D.A.; Pietryga, D.; Wall, D.; Champagne, M.; et al. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N. Engl. J. Med. 2005, 352, 2069–2081. [Google Scholar] [CrossRef]
- Escolar, M.L.; West, T.; Dallavecchia, A.; Poe, M.D.; LaPoint, K. Clinical management of Krabbe disease. J. Neurosci. Res. 2016, 94, 1118–1125. [Google Scholar] [CrossRef]
- Rafi, M.A.; Luzi, P.; Wenger, D.A. Conditions for combining gene therapy with bone marrow transplantation in murine Krabbe disease. Bioimpacts 2020, 10, 105–115. [Google Scholar] [CrossRef]
- Yoon, I.C.; Bascou, N.A.; Poe, M.D.; Szabolcs, P.; Escolar, M.L. Long-term neurodevelopmental outcomes of hematopoietic stem cell transplantation for late-infantile Krabbe disease. Blood 2021, 137, 1719–1730. [Google Scholar] [CrossRef]
- Khan, A.; Barber, D.L.; Huang, J.; Rupar, C.A.; Rip, J.W.; Auray-Blais, C.; Boutin, M.; O’Hoski, P.; Gargulak, K.; McKillop, W.M.; et al. Lentivirus-mediated gene therapy for Fabry disease. Nat. Commun. 2021, 12, 1178. [Google Scholar] [CrossRef]
- Dahl, M.; Smith, E.M.K.; Warsi, S.; Rothe, M.; Ferraz, M.J.; Aerts, J.; Golipour, A.; Harper, C.; Pfeifer, R.; Pizzurro, D.; et al. Correction of pathology in mice displaying Gaucher disease type 1 by a clinically-applicable lentiviral vector. Mol. Ther. Methods Clin. Dev. 2021, 20, 312–323. [Google Scholar] [CrossRef]
- Biffi, A.; Capotondo, A.; Fasano, S.; del Carro, U.; Marchesini, S.; Azuma, H.; Malaguti, M.C.; Amadio, S.; Brambilla, R.; Grompe, M.; et al. Gene therapy of metachromatic leukodystrophy reverses neurological damage and deficits in mice. J. Clin. Investig. 2006, 116, 3070–3082. [Google Scholar] [CrossRef] [PubMed]
- Biffi, A.; Cesani, M.; Fumagalli, F.; Del Carro, U.; Baldoli, C.; Canale, S.; Gerevini, S.; Amadio, S.; Falautano, M.; Rovelli, A.; et al. Metachromatic leukodystrophy—Mutation analysis provides further evidence of genotype-phenotype correlation. Clin. Genet. 2008, 74, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Biffi, A.; Montini, E.; Lorioli, L.; Cesani, M.; Fumagalli, F.; Plati, T.; Baldoli, C.; Martino, S.; Calabria, A.; Canale, S.; et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013, 341, 1233158. [Google Scholar] [CrossRef] [PubMed]
- Biffi, A.; De Palma, M.; Quattrini, A.; Del Carro, U.; Amadio, S.; Visigalli, I.; Sessa, M.; Fasano, S.; Brambilla, R.; Marchesini, S.; et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Investig. 2004, 113, 1118–1129. [Google Scholar] [CrossRef] [PubMed]
- Capotondo, A.; Cesani, M.; Pepe, S.; Fasano, S.; Gregori, S.; Tononi, L.; Venneri, M.A.; Brambilla, R.; Quattrini, A.; Ballabio, A.; et al. Safety of arylsulfatase A overexpression for gene therapy of metachromatic leukodystrophy. Hum. Gene Ther. 2007, 18, 821–836. [Google Scholar] [CrossRef]
- Cesani, M.; Capotondo, A.; Plati, T.; Sergi, L.S.; Fumagalli, F.; Roncarolo, M.G.; Naldini, L.; Comi, G.; Sessa, M.; Biffi, A. Characterization of new arylsulfatase A gene mutations reinforces genotype-phenotype correlation in metachromatic leukodystrophy. Hum. Mutat. 2009, 30, E936–E945. [Google Scholar] [CrossRef]
- Sessa, M.; Lorioli, L.; Fumagalli, F.; Acquati, S.; Redaelli, D.; Baldoli, C.; Canale, S.; Lopez, I.D.; Morena, F.; Calabria, A.; et al. Lentiviral haemopoietic stem-cell gene therapy in early-onset metachromatic leukodystrophy: An ad-hoc analysis of a non-randomised, open-label, phase 1/2 trial. Lancet 2016, 388, 476–487. [Google Scholar] [CrossRef]
- Cartier, N.; Hacein-Bey-Abina, S.; Bartholomae, C.C.; Veres, G.; Schmidt, M.; Kutschera, I.; Vidaud, M.; Abel, U.; Dal-Cortivo, L.; Caccavelli, L.; et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009, 326, 818–823. [Google Scholar] [CrossRef]
- Consiglio, A.; Quattrini, A.; Martino, S.; Bensadoun, J.C.; Dolcetta, D.; Trojani, A.; Benaglia, G.; Marchesini, S.; Cestari, V.; Oliverio, A.; et al. In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: Correction of neuropathology and protection against learning impairments in affected mice. Nat. Med. 2001, 7, 310–316. [Google Scholar] [CrossRef]
- Matzner, U.; Schestag, F.; Hartmann, D.; Lullmann-Rauch, R.; D’Hooge, R.; De Deyn, P.P.; Gieselmann, V. Bone marrow stem cell gene therapy of arylsulfatase A-deficient mice, using an arylsulfatase A mutant that is hypersecreted from retrovirally transduced donor-type cells. Hum. Gene Ther. 2001, 12, 1021–1033. [Google Scholar] [CrossRef]
- Patil, S.A.; Maegawa, G.H. Developing therapeutic approaches for metachromatic leukodystrophy. Drug Des. Devel Ther. 2013, 7, 729–745. [Google Scholar] [CrossRef]
- Fink, J.K.; Correll, P.H.; Perry, L.K.; Brady, R.O.; Karlsson, S. Correction of glucocerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease. Proc. Natl. Acad. Sci. USA 1990, 87, 2334–2338. [Google Scholar] [CrossRef]
- Medin, J.A.; Migita, M.; Pawliuk, R.; Jacobson, S.; Amiri, M.; Kluepfel-Stahl, S.; Brady, R.O.; Humphries, R.K.; Karlsson, S. A bicistronic therapeutic retroviral vector enables sorting of transduced CD34+ cells and corrects the enzyme deficiency in cells from Gaucher patients. Blood 1996, 87, 1754–1762. [Google Scholar] [CrossRef]
- Dunbar, C.; Kohn, D. Retroviral mediated transfer of the cDNA for human glucocerebrosidase into hematopoietic stem cells of patients with Gaucher disease. A phase I study. Hum. Gene Ther. 1996, 7, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Keeler, A.M.; Flotte, T.R. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here? Annu. Rev. Virol. 2019, 6, 601–621. [Google Scholar] [CrossRef] [PubMed]
- Bryant, L.M.; Christopher, D.M.; Giles, A.R.; Hinderer, C.; Rodriguez, J.L.; Smith, J.B.; Traxler, E.A.; Tycko, J.; Wojno, A.P.; Wilson, J.M. Lessons learned from the clinical development and market authorization of Glybera. Hum. Gene Ther. Clin Dev. 2013, 24, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Yla-Herttuala, S. Glybera’s second act: The curtain rises on the high cost of therapy. Mol. Ther. 2015, 23, 217–218. [Google Scholar] [CrossRef]
- CADTH. Clinical Review Report: Voretigene Neparvovec (Luxturna): (Novartis Pharmaceuticals Canada Inc.): Indication: Vision Loss, Inherited Retinal Dystrophy; CADTH Common Drug Reviews; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, USA, 2021.
- Zolgensma—One-time gene therapy for spinal muscular atrophy. Med. Lett. Drugs Ther. 2019, 61, 113–114.
- Dean, R.; Jensen, I.; Cyr, P.; Miller, B.; Maru, B.; Sproule, D.M.; Feltner, D.E.; Wiesner, T.; Malone, D.C.; Bischof, M.; et al. An updated cost-utility model for onasemnogene abeparvovec (Zolgensma(R)) in spinal muscular atrophy type 1 patients and comparison with evaluation by the Institute for Clinical and Effectiveness Review (ICER). J. Mark. Access Health Policy 2021, 9, 1889841. [Google Scholar] [CrossRef]
- Blair, H.A. Valoctocogene Roxaparvovec: First Approval. Drugs 2022, 82, 1505–1510. [Google Scholar] [CrossRef] [PubMed]
- Pattali, R.; Mou, Y.; Li, X.J. AAV9 Vector: A Novel modality in gene therapy for spinal muscular atrophy. Gene Ther. 2019, 26, 287–295. [Google Scholar] [CrossRef]
- Van Alstyne, M.; Tattoli, I.; Delestree, N.; Recinos, Y.; Workman, E.; Shihabuddin, L.S.; Zhang, C.; Mentis, G.Z.; Pellizzoni, L. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat. Neurosci. 2021, 24, 930–940. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.M.; Rozenberg, A.; Gray, S.J. Comparison of high-dose intracisterna magna and lumbar puncture intrathecal delivery of AAV9 in mice to treat neuropathies. Brain Res. 2020, 1739, 146832. [Google Scholar] [CrossRef]
- Zhang, X.; Chai, Z.; Lee Dobbins, A.; Itano, M.S.; Askew, C.; Miao, Z.; Niu, H.; Samulski, R.J.; Li, C. Customized blood-brain barrier shuttle peptide to increase AAV9 vector crossing the BBB and augment transduction in the brain. Biomaterials 2022, 281, 121340. [Google Scholar] [CrossRef] [PubMed]
- Dayton, R.D.; Wang, D.B.; Klein, R.L. The advent of AAV9 expands applications for brain and spinal cord gene delivery. Expert Opin. Biol. Ther. 2012, 12, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Pages, G.; Gimenez-Llort, L.; Garcia-Lareu, B.; Ariza, L.; Navarro, M.; Casas, C.; Chillon, M.; Bosch, A. Intrathecal AAVrh10 corrects biochemical and histological hallmarks of mucopolysaccharidosis VII mice and improves behavior and survival. Hum. Mol. Genet. 2019, 28, 3610–3624. [Google Scholar] [CrossRef]
- Guo, O.L.; Akpek, E. The negative effects of dry eye disease on quality of life and visual function. Turk. J. Med. Sci. 2020, 50, 1611–1615. [Google Scholar] [CrossRef]
- Lowes, L.P.; Alfano, L.N.; Arnold, W.D.; Shell, R.; Prior, T.W.; McColly, M.; Lehman, K.J.; Church, K.; Sproule, D.M.; Nagendran, S.; et al. Impact of Age and Motor Function in a Phase 1/2A Study of Infants With SMA Type 1 Receiving Single-Dose Gene Replacement Therapy. Pediatr. Neurol. 2019, 98, 39–45. [Google Scholar] [CrossRef]
- Hinderer, C.; Katz, N.; Buza, E.L.; Dyer, C.; Goode, T.; Bell, P.; Richman, L.K.; Wilson, J.M. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Gene Ther. 2018, 29, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, C.; Katz, N.; Dyer, C.; Goode, T.; Johansson, J.; Bell, P.; Richman, L.; Buza, E.; Wilson, J.M. Translational Feasibility of Lumbar Puncture for Intrathecal AAV Administration. Mol. Ther. Methods Clin. Dev. 2020, 17, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Hinderer, C.; Miller, R.; Dyer, C.; Johansson, J.; Bell, P.; Buza, E.; Wilson, J.M. Adeno-associated virus serotype 1-based gene therapy for FTD caused by GRN mutations. Ann. Clin. Transl. Neurol. 2020, 7, 1843–1853. [Google Scholar] [CrossRef]
- Shaimardanova, A.A.; Kitaeva, K.V.; Abdrakhmanova, I.I.; Chernov, V.M.; Rutland, C.S.; Rizvanov, A.A.; Chulpanova, D.S.; Solovyeva, V.V. Production and Application of Multicistronic Constructs for Various Human Disease Therapies. Pharmaceutics 2019, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, S.R.; Li, L.H.; Park, H.J.; Park, J.H.; Lee, K.Y.; Kim, M.K.; Shin, B.A.; Choi, S.Y. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE 2011, 6, e18556. [Google Scholar] [CrossRef]
- Bradbury, A.M.; Cochran, J.N.; McCurdy, V.J.; Johnson, A.K.; Brunson, B.L.; Gray-Edwards, H.; Leroy, S.G.; Hwang, M.; Randle, A.N.; Jackson, L.S.; et al. Therapeutic response in feline sandhoff disease despite immunity to intracranial gene therapy. Mol. Ther. 2013, 21, 1306–1315. [Google Scholar] [CrossRef]
- Rockwell, H.E.; McCurdy, V.J.; Eaton, S.C.; Wilson, D.U.; Johnson, A.K.; Randle, A.N.; Bradbury, A.M.; Gray-Edwards, H.L.; Baker, H.J.; Hudson, J.A.; et al. AAV-mediated gene delivery in a feline model of Sandhoff disease corrects lysosomal storage in the central nervous system. ASN Neuro. 2015, 7, 1759091415569908. [Google Scholar] [CrossRef]
- McCurdy, V.J.; Johnson, A.K.; Gray-Edwards, H.L.; Randle, A.N.; Bradbury, A.M.; Morrison, N.E.; Hwang, M.; Baker, H.J.; Cox, N.R.; Sena-Esteves, M.; et al. Therapeutic benefit after intracranial gene therapy delivered during the symptomatic stage in a feline model of Sandhoff disease. Gene Ther. 2021, 28, 142–154. [Google Scholar] [CrossRef]
- McCurdy, V.J.; Rockwell, H.E.; Arthur, J.R.; Bradbury, A.M.; Johnson, A.K.; Randle, A.N.; Brunson, B.L.; Hwang, M.; Gray-Edwards, H.L.; Morrison, N.E.; et al. Widespread correction of central nervous system disease after intracranial gene therapy in a feline model of Sandhoff disease. Gene Ther. 2015, 22, 181–189. [Google Scholar] [CrossRef]
- Halder, S.; Van Vliet, K.; Smith, J.K.; Duong, T.T.; McKenna, R.; Wilson, J.M.; Agbandje-McKenna, M. Structure of neurotropic adeno-associated virus AAVrh.8. J. Struct. Biol. 2015, 192, 21–36. [Google Scholar] [CrossRef]
- Sargeant, T.J.; Wang, S.; Bradley, J.; Smith, N.J.; Raha, A.A.; McNair, R.; Ziegler, R.J.; Cheng, S.H.; Cox, T.M.; Cachon-Gonzalez, M.B. Adeno-associated virus-mediated expression of beta-hexosaminidase prevents neuronal loss in the Sandhoff mouse brain. Hum. Mol. Genet. 2011, 20, 4371–4380. [Google Scholar] [CrossRef] [PubMed]
- Gray-Edwards, H.L.; Brunson, B.L.; Holland, M.; Hespel, A.M.; Bradbury, A.M.; McCurdy, V.J.; Beadlescomb, P.M.; Randle, A.N.; Salibi, N.; Denney, T.S.; et al. Mucopolysaccharidosis-like phenotype in feline Sandhoff disease and partial correction after AAV gene therapy. Mol. Genet. Metab. 2015, 116, 80–87. [Google Scholar] [CrossRef] [PubMed]
- McNulty, M.A.; Prevatt, P.B.; Nussbaum, E.R.; Randle, A.N.; Johnson, A.K.; Hudson, J.A.; Gray-Edwards, H.L.; Sena-Esteves, M.; Martin, D.R.; Carlson, C.S. Abnormal epiphyseal development in a feline model of Sandhoff disease. J. Orthop. Res. 2020, 38, 2580–2591. [Google Scholar] [CrossRef]
- Kattenhorn, L.M.; Tipper, C.H.; Stoica, L.; Geraghty, D.S.; Wright, T.L.; Clark, K.R.; Wadsworth, S.C. Adeno-Associated Virus Gene Therapy for Liver Disease. Hum. Gene Ther. 2016, 27, 947–961. [Google Scholar] [CrossRef]
- Rodriguez-Castejon, J.; Alarcia-Lacalle, A.; Gomez-Aguado, I.; Vicente-Pascual, M.; Solinis Aspiazu, M.A.; Del Pozo-Rodriguez, A.; Rodriguez-Gascon, A. alpha-Galactosidase A Augmentation by Non-Viral Gene Therapy: Evaluation in Fabry Disease Mice. Pharmaceutics 2021, 13, 771. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Y.; Stirnemann, J.; Belmatoug, N. [Gaucher disease: A review]. Rev. Med. Interne 2019, 40, 313–322. [Google Scholar] [CrossRef]
- Du, S.; Ou, H.; Cui, R.; Jiang, N.; Zhang, M.; Li, X.; Ma, J.; Zhang, J.; Ma, D. Delivery of Glucosylceramidase Beta Gene Using AAV9 Vector Therapy as a Treatment Strategy in Mouse Models of Gaucher Disease. Hum. Gene Ther. 2019, 30, 155–167. [Google Scholar] [CrossRef]
- Ryan, E.; Seehra, G.; Sharma, P.; Sidransky, E. GBA1-associated parkinsonism: New insights and therapeutic opportunities. Curr. Opin. Neurol. 2019, 32, 589–596. [Google Scholar] [CrossRef]
- Abeliovich, A.; Hefti, F.; Sevigny, J. Gene Therapy for Parkinson’s Disease Associated with GBA1 Mutations. J. Park. Dis. 2021, 11, S183–S188. [Google Scholar] [CrossRef]
- den Heijer, J.M.; Cullen, V.C.; Quadri, M.; Schmitz, A.; Hilt, D.C.; Lansbury, P.; Berendse, H.W.; van de Berg, W.D.J.; de Bie, R.M.A.; Boertien, J.M.; et al. A Large-Scale Full GBA1 Gene Screening in Parkinson’s Disease in the Netherlands. Mov. Disord. 2020, 35, 1667–1674. [Google Scholar] [CrossRef]
- Rosenberg, J.B.; Kaminsky, S.M.; Aubourg, P.; Crystal, R.G.; Sondhi, D. Gene therapy for metachromatic leukodystrophy. J. Neurosci. Res. 2016, 94, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; De Jesus, O. Krabbe Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Orsini, J.J.; Escolar, M.L.; Wasserstein, M.P.; Caggana, M. Krabbe Disease. In GeneReviews((R)); Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Bradbury, A.M.; Bongarzone, E.R.; Sands, M.S. Krabbe disease: New hope for an old disease. Neurosci. Lett. 2021, 752, 135841. [Google Scholar] [CrossRef] [PubMed]
- Massaro, G.; Geard, A.F.; Liu, W.; Coombe-Tennant, O.; Waddington, S.N.; Baruteau, J.; Gissen, P.; Rahim, A.A. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021, 11, 611. [Google Scholar] [CrossRef]
- European Medicines Agency. Libmeldy: Autologous CD34+ Cells Encoding ARSA Gene. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/libmeldy (accessed on 22 December 2020).
- Nuijten, M. Pricing Zolgensma—The world’s most expensive drug. J. Mark. Access Health Policy 2022, 10, 2022353. [Google Scholar] [CrossRef] [PubMed]
- Green, A.G. Spinal muscular atrophy and the world’s most expensive medicines: The price of life. Dev. Med. Child Neurol. 2022, 64, 676–677. [Google Scholar] [CrossRef]
Disease | Inheritance | Mutant Gene | #OMIM | Deficient Protein, UniProt Accession | Description | Estimated Prevalence in General Population | Ref. |
---|---|---|---|---|---|---|---|
GM1-gangliosidosis | AR | GLB1 | 230500 230600 230650 | β-Galactosidase 1, P16278 | Predominant damage to the nervous system, various degrees of neurodegeneration, and skeletal anomalies | 1:100,000– 200,000 | [7] |
GM2-gangliosidoses, Tay–Sachs disease | AR | HEXA | 272800 | β-Hexosaminidase A, α-subunit P06865 | Predominant damage to the nervous system and various degrees of neurodegeneration | 1:100,000 | [8] |
GM2-gangliosidoses, Sandhoff disease | AR | HEXB | 268800 | β-Hexosaminidase A, β-subunit P07686 | 1:500,000 | [9,10,11] | |
AB variant of GM2-gangliosidosis | AR | GM2A | 272750 | GM2A, P17900 | Extremely rare | [8,12] | |
Fabry disease | XL | GLA | 301500 | α-Galactosidase A, P06280 | Multisystemic disease; progressive renal failure; skin, cardiovascular, and nervous system lesions | 1:100,000– 500,000 | [13] |
Gaucher disease | AR | GBA1 | 230800 230900 231000 231005 608013 | β-Glucocerebrosidase 1, P04062 | Multisystemic disease, predominant damage to cells of mononuclear phagocyte origin (Gaucher cells); varying degree of damage to the nervous system; high risk of developing Parkinson’s disease | 1:40,000– 60,000 | [14,15,16] |
SapC deficiency, atypical Gaucher disease | AR | PSAP | 610539 | Saposin C, P07602 | Extremely rare | [17,18,19,20] | |
Metachromatic leukodystrophy | AR | ARSA | 250100 | Arylsulfatase A, P15289 | Damage to the white matter or myelin sheath in nervous system cells | 1:40,000– 160,000 | [21] |
SapB deficiency, atypical metachromatic leukodystrophy | AR | PSAP | 249900 | Saposin B, P07602 | Extremely rare | [22,23,24] | |
Krabbe disease | AR | GALC | 245200 | Galactocerebrosidase, P54803 | Damage to the white matter or myelin sheath in nervous system cells | 1:100,000 | [25,26,27,28] |
SapA deficiency, atypical Krabbe disease | AR | PSAP | 611722 | Saposin A, P07602 | Extremely rare | [29,30] | |
Type A and B Niemann–Pick disease | AR | SMPD1 | 257200 607616 | Sphingomyelinase, Q9NY59 | Damage to the nervous system, bone marrow, spleen, and, in some cases, lungs | 1:250,000 | [31,32,33] |
Farber disease | AR | ASAH1 | 228000 | Acid ceramidase, Q13510 | Multisystem disease with progressive joint deformation and dysfunctions of multiple organ systems, including the nervous system | <1:1,000,000 | [34,35,36] |
Combined saposin deficiency | AR | PSAP | 611721 | Saposins A, B, C, and D, P07602 | Fatal disorder affecting the nervous system | Extremely rare | [22,37] |
Disease | Vector | Gene | Method of Administration | Participants | Official Title | Clinical Study ID | Years | Links |
---|---|---|---|---|---|---|---|---|
Adeno-associated viral vectors | ||||||||
GM1-gangliosidosis | AAV9 | GLB1 | Intravenous | 45 | A Phase 1/2 Study of Intravenous Gene Transfer with an AAV9 Vector Expressing Human Beta-galactosidase in Type I and Type II GM1 Gangliosidosis | NCT03952637 | 2019–2027 | [66] |
AAVrh10 | GLB1 | Intracisternal | 16 | An Open-Label Adaptive-Design Study of Intracisternal Adenoassociated Viral Vector Serotype rh.10 Carrying the Human β-Galactosidase cDNA for Treatment of GM1 Gangliosidosis | NCT04273269 | 2021–2030 | [67] | |
AAVhu68 | GLB1 | Intracisternal magna | 20 | Phase 1/2 Open-Label, Multicenter Study to Assess the Safety, Tolerability and Efficacy of a Single-Dose of PBGM01 Delivered into the Cisterna Magna of Subjects with Type 1 (Early Onset), and Type 2a (Late Onset) Infantile GM1 Gangliosidosis | NCT04713475 | 2021–2029 | [68] | |
GM2-gangliosidosis | AAV9 | HEXA-P2A-HEXB | Intrathecal | 3 | Phase 1/2, Open-Label Clinical Study to Evaluate the Safety and Efficacy of Intrathecal TSHA-101 Gene Therapy for Treatment of Infantile Onset GM2 Gangliosidosis | NCT04798235 | 2021–2027 | |
AAVrh8 | HEXA, HEXB | Bilateral thalamic, intrathecal | 18 | A Two-Stage, Dose-Escalation and Safety & Efficacy Study of Bilateral Intraparenchymal Thalamic and Intracisternal/Intrathecal Administration of AXO-AAV-GM2 in Tay–Sachs or Sandhoff Disease | NCT04669535 | 2021–2028 | ||
Fabry disease | AAV | GLA | Intravenous | 18 | An Open-label, Phase 1/2 Trial of Gene Therapy 4D-310 in Adults with Fabry Disease | NCT04519749 | 2020–2027 | [69] |
An Open-Label, Phase 1/2a Trial of Gene Therapy 4D-310 in Adults with Fabry Disease and Cardiac Involvement | NCT05629559 | 2022–2028 | ||||||
AAV8 | GLA | Intravenous | 15 | A Phase 1/2, Baseline-controlled, Non-randomized, Open-label, Single-ascending Dose Study of a Novel Adeno-associated Viral Vector (FLT190) in Patients With Fabry | NCT04040049 | 2019–2022 | [70] | |
50 | A Multicenter, Long-term, Follow-up Study to Investigate the Safety and Durability of Response Following Dosing of an Adeno-associated Viral Vector (FLT190) in Subjects With Fabry Disease | NCT04455230 | 2020–2026 | |||||
AAV6 | GLA | Intravenous | 48 | A Phase I/II, Multicenter, Open-Label, Single-Dose, Dose-Ranging Study to Assess the Safety and Tolerability of ST-920, an AAV2/6 Human Alpha Galactosidase A Gene Therapy, in Subjects with Fabry Disease | NCT04046224 | 2019–2024 | [61] | |
Long-Term Follow-up of Fabry Disease Subjects Who Were Treated With ST-920, an AAV2/6 Human Alpha Galactosidase A Gene Therapy | NCT05039866 | 2021–2029 | ||||||
Gaucher disease | AAV | GBA | Intravenous | 18 | A Phase 1/2, Open-label, Safety, Tolerability, and Efficacy Study of FLT201 in Adult Patients with Gaucher Disease Type 1 (GALILEO-1) | NCT05324943 | 2022–2025 | |
AAV9 | GBA | Intravenous | 15 | An Open-label, Dose-Finding, Phase 1/2 Study to Evaluate the Safety and Tolerability of a Single Intravenous Dose of LY3884961 in Patients with Peripheral Manifestations of Gaucher Disease (PROCEED) | NCT05487599 | 2022–2030 | ||
15 | An Open-label, Phase 1/2 Study to Evaluate the Safety and Efficacy of Single-dose LY3884961 in Infants with Type 2 Gaucher Disease | NCT04411654 | 2021–2028 | |||||
24 | A Phase 1/2a Open-Label Ascending Dose Study to Evaluate the Safety and Effects of LY3884961 in Patients with Parkinson’s Disease With At least One GBA1 Mutation (PROPEL) | NCT04127578 | 2020–2028 | |||||
Metachromatic leukodystrophy | AAVrh10 | ARSA | Intracerebral | 5 | A Phase I/II, Open Labeled, Monocentric Study of Direct Intracranial Administration of a Replication Deficient Adeno-associated Virus Gene Transfer Vector Serotype rh.10 Expressing the Human ARSA cDNA to Children with Metachromatic Leukodystrophy | NCT01801709 | 2014–2029 | [71,72,73,74,75] |
Krabbe disease | AAVhu68 | GALC | Intracisternal magna | 24 | A Phase 1/2 Open-Label, Multicenter Dose-Ranging and Confirmatory Study to Assess the Safety, Tolerability and Efficacy of PBKR03 Administered to Pediatric Subjects with Early Infantile Krabbe Disease (Globoid Cell Leukodystrophy) | NCT04771416 | 2022–2030 | [25] |
AAVrh10 | GALC | Intravenous | 6 | A Phase 1/2 Clinical Study of Intravenous Gene Transfer with an AAVrh10 Vector Expressing GALC in Krabbe Subjects Receiving Hematopoietic Stem Cell Transplantation (RESKUE) | NCT04693598 | 2021–2024 | [76,77,78,79,80,81,82] | |
Lentiviral vectors | ||||||||
Fabry disease | LV | GLA | Transplantation of CD34+ genetically modified with LVs | 9 | Long-Term Follow-up Study of Subjects with Fabry Disease Who Received Lentiviral Gene Therapy in Study AVRO-RD-01-201 | NCT04999059 | 2019–2036 | |
11 | An Open-Label, Multinational Study of The Efficacy and Safety of Ex Vivo, Lentiviral Vector-Mediated Gene Therapy AVR-RD-01 For Treatment-Naive Subjects with Classic Fabry Disease | NCT03454893 | 2018–2022 | |||||
LV | GLA | Transplantation of CD34+ genetically modified with LVs | Clinical Pilot Study of Autologous Stem Cell Transplantation of Cluster of Differentiation 34 Positive (CD34+) Cells Engineered to Express Alpha Galactosidase A in Patients With Fabry Disease | NCT02800070 | 2016–2024 | [83] | ||
Gaucher disease | LV | GBA | Transplantation of CD34+ genetically modified with LVs | 16 | The Guard1 Trial, an Open-Label, Multinational Phase 1/2 Study of the Safety and Efficacy of Ex Vivo, Lentiviral Vector-Mediated Gene Therapy AVR-RD-02 for Subjects with Type 1 Gaucher Disease | NCT04145037 | 2019–2023 | [84] |
A Long-Term Follow-up Study of Subjects with Gaucher Disease Who Previously Received AVR-RD-02 | NCT04836377 | 2021–2038 | ||||||
Metachromatic leukodystrophy | LV | ARSA | Transplantation of CD34+ genetically modified with LVs | 20 | Gene Therapy for Metachromatic Leukodystrophy | NCT01560182 | 2010–2025 | [52,85,86,87,88,89,90,91] |
6 | An Open-Label, Non-randomized Trial to Evaluate the Safety and Efficacy of a Single Infusion of OTL-200 in Patients With Late Juvenile (LJ) Metachromatic Leukodystrophy (MLD) | NCT04283227 | 2022–2031 | |||||
10 | A Single Arm, Open-Label, Clinical Study of Cryopreserved Autologous CD34+ Cells Transduced with Lentiviral Vector Containing Human ARSA cDNA (OTL-200), for the Treatment of Early Onset Metachromatic Leukodystrophy (MLD) | NCT03392987 | 2018–2028 | |||||
LV | ARSA | Transplantation of CD34+ genetically modified with LVs | 50 | A Phase I/II Clinical Trial of Lentiviral Hematopoietic Stem Cell Gene Therapy for Treatment of Developed Metachromatic Leukodystrophy and Adrenoleukodystrophy | NCT02559830 | 2015–2025 | [92,93,94,95] | |
LV | ARSA | Intracerebral | 10 | Gene Therapy for Metachromatic Leukodystrophy (MLD) Using a Self-inactivating Lentiviral Vector (TYF-ARSA) | NCT03725670 | 2018–2020 | ||
Retroviral vectors | ||||||||
Gaucher disease | Retrovirus | GBA1 | Transplantation of CD34+ genetically modified with a retrovirus | 120 | Retroviral-Mediated Transfer and Expression of Glucocerebrosidase and Ceramidtrihexosidase (a-Galactosidase A) cDNA’s in Human Hematopoietic Progenitor Cells | NCT00001234 | 1988–2002 | [96,97,98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaimardanova, A.A.; Solovyeva, V.V.; Issa, S.S.; Rizvanov, A.A. Gene Therapy of Sphingolipid Metabolic Disorders. Int. J. Mol. Sci. 2023, 24, 3627. https://doi.org/10.3390/ijms24043627
Shaimardanova AA, Solovyeva VV, Issa SS, Rizvanov AA. Gene Therapy of Sphingolipid Metabolic Disorders. International Journal of Molecular Sciences. 2023; 24(4):3627. https://doi.org/10.3390/ijms24043627
Chicago/Turabian StyleShaimardanova, Alisa A., Valeriya V. Solovyeva, Shaza S. Issa, and Albert A. Rizvanov. 2023. "Gene Therapy of Sphingolipid Metabolic Disorders" International Journal of Molecular Sciences 24, no. 4: 3627. https://doi.org/10.3390/ijms24043627
APA StyleShaimardanova, A. A., Solovyeva, V. V., Issa, S. S., & Rizvanov, A. A. (2023). Gene Therapy of Sphingolipid Metabolic Disorders. International Journal of Molecular Sciences, 24(4), 3627. https://doi.org/10.3390/ijms24043627