“Voting with Their Feet”: Delineating the Sphere of Influence Using Social Media Data
Abstract
:1. Introduction
2. Delineating Boundaries of Places
3. Methodology and Data
3.1. A Density-Based Method
3.2. Data
4. Exploring Geographical Boundaries in Cyberspace
4.1. Washington, DC versus Baltimore, MD
4.2. Rockville versus Bethesda, MD
4.3. Ballston versus Clarendon, VA
5. Conclusion and Discussions
Author Contributions
Conflicts of Interest
References
- Hartshorne, R. The nature of geography: A critical survey of current thought in the light of the past. Ann. Assoc. Am. Geogr. 1939, 29, 173–412. [Google Scholar] [CrossRef]
- James, P.E. Toward a further understanding of the regional concept. Ann. Assoc. Am. Geogr. 1952, 42, 195–222. [Google Scholar] [CrossRef]
- Norton, W. Human Geography, 8th ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Haggett, P. Geography: A Global Synthesis; Pearson Education: London, UK, 2001. [Google Scholar]
- Haggett, P. Locational Methods, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Huff, D.L. The delineation of a national system of planning regions on the basis of urban spheres of influence. Reg. Stud. 1973, 7, 323–329. [Google Scholar] [CrossRef]
- Huff, D.L. Defining and estimating a trade area. J. Mark. 1964, 28, 34–38. [Google Scholar] [CrossRef]
- Berry, B.J. Geography of Market Centers and Retail Distribution; Prentice-Hall Englewood Cliffs: Upper Saddle River, NJ, USA, 1967. [Google Scholar]
- Preston, R.E. The dynamic component of christaller’s central place theory and the theme of change in his research. Can. Geogr. Géogr. Can. 1983, 27, 4–16. [Google Scholar] [CrossRef]
- Lloyd, R.; Steinke, T. The identification of regional boundaries on cognitive maps. Prof. Geogr. 1986, 38, 149–159. [Google Scholar] [CrossRef]
- Coulton, C.J.; Jennings, M.Z.; Chan, T. How big is my neighborhood? Individual and contextual effects on perceptions of neighborhood scale. Am. J. Commun. Psychol. 2013, 51, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.A.; Campbell, K.E. Common ground? Urban neighborhoods as survey respondents see them. Soc. Sci. Q. 1997, 78, 922–936. [Google Scholar]
- Elwood, S.; Goodchild, M.F.; Sui, D.Z. Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Ann. Assoc. Am. Geogr. 2012, 102, 571–590. [Google Scholar] [CrossRef]
- Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences; Sage: Beverly Hills, CA, USA, 2014. [Google Scholar]
- Crampton, J.W.; Graham, M.; Poorthuis, A.; Shelton, T.; Stephens, M.; Wilson, M.W.; Zook, M. Beyond the geotag: Situating ‘big data’and leveraging the potential of the geoweb. Cartogr. Geogr. Inf. Sci. 2013, 40, 130–139. [Google Scholar] [CrossRef]
- Rzeszewski, M. Geosocial capta in geographical research—A critical analysis. Cartogr. Geogr. Inf. Sci. 2016, 1–13. [Google Scholar] [CrossRef]
- Rzeszewski, M.; Beluch, L. Spatial characteristics of twitter users—Toward the understanding of geosocial media production. ISPRS Int. J. Geo-Inf. 2017, 6, 236. [Google Scholar] [CrossRef]
- Sloan, L.; Morgan, J. Who tweets with their location? Understanding the relationship between demographic characteristics and the use of geoservices and geotagging on twitter. PLoS ONE 2015, 10, e0142209. [Google Scholar] [CrossRef] [PubMed]
- Ratti, C.; Sobolevsky, S.; Calabrese, F.; Andris, C.; Reades, J.; Martino, M.; Claxton, R.; Strogatz, S.H. Redrawing the map of great britain from a network of human interactions. PLoS ONE 2010, 5, e14248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobolevsky, S.; Szell, M.; Campari, R.; Couronné, T.; Smoreda, Z.; Ratti, C. Delineating geographical regions with networks of human interactions in an extensive set of countries. PLoS ONE 2013, 8, e81707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollenstein, L.; Purves, R. Exploring place through user-generated content: Using flickr tags to describe city cores. J. Spat. Inf. Sci. 2010, 2010, 21–48. [Google Scholar]
- Stefanidis, A.; Cotnoir, A.; Croitoru, A.; Crooks, A.; Rice, M.; Radzikowski, J. Demarcating new boundaries: Mapping virtual polycentric communities through social media content. Cartogr. Geogr. Inf. Sci. 2013, 40, 116–129. [Google Scholar] [CrossRef]
- Cockings, S.; Martin, D. Zone design for environment and health studies using pre-aggregated data. Soc. Sci. Med. 2005, 60, 2729–2742. [Google Scholar] [CrossRef] [PubMed]
- Folch, D.C.; Spielman, S.E. Identifying regions based on flexible user-defined constraints. Int. J. Geogr. Inf. Sci. 2014, 28, 164–184. [Google Scholar] [CrossRef] [PubMed]
- Openshaw, S. A geographical solution to scale and aggregation problems in region-building, partitioning and spatial modelling. Trans. Inst. Br. Geogr. 1977, 2, 459–472. [Google Scholar] [CrossRef]
- Adams, J.S.; VanDrasek, B.J.; Phillips, E.G. Metropolitan area definition in the united states. Urban Geogr. 1999, 20, 695–726. [Google Scholar] [CrossRef]
- Dahmann, D.C. New approaches to delineating metropolitan and nonmetropolitan settlement: Geographers drawing the line. Urban Geogr. 1999, 20, 683–694. [Google Scholar] [CrossRef]
- Rain, D.R. Commuting directionality, a functional measure for metropolitan and nonmetropolitan area standards. Urban Geogr. 1999, 20, 749–767. [Google Scholar] [CrossRef]
- Haynes, K.E.; Fotheringham, A.S. Gravity and Spatial Interaction Models; Sage: Beverly Hills, CA, USA, 1984; Volume 2. [Google Scholar]
- Huff, D.L.; Lutz, J.M. Ireland’s urban system. Econ. Geogr. 1979, 55, 196–212. [Google Scholar] [CrossRef]
- Huff, D.L.; Lutz, J.M. Urban spheres of influence in ghana. J. Dev. Areas 1989, 23, 201–220. [Google Scholar]
- Berry, B.J.; Lamb, R.F. The delineation of urban spheres of influence: Evaluation of an interaction model. Reg. Stud. 1974, 8, 185–190. [Google Scholar] [CrossRef]
- Boots, B.N. Weighting thiessen polygons. Econ. Geogr. 1980, 56, 248–259. [Google Scholar] [CrossRef]
- Aurenhammer, F.; Edelsbrunner, H. An optimal algorithm for constructing the weighted voronoi diagram in the plane. Pattern Recognit. 1984, 17, 251–257. [Google Scholar] [CrossRef]
- Mu, L.; Wang, X. Population landscape: A geometric approach to studying spatial patterns of the us urban hierarchy. Int. J. Geogr. Inf. Sci. 2006, 20, 649–667. [Google Scholar] [CrossRef]
- Agarwal, P. Operationalising ‘sense of place’as a cognitive operator for semantics in place-based ontologies. In Spatial Information Theory; Springer-Verlag: Berlin Heidelberg, Germany, 2005; pp. 96–114. [Google Scholar]
- Lloyd, R.; Patton, D.; Cammack, R. Basic-level geographic categories. Prof. Geogr. 1996, 48, 181–194. [Google Scholar] [CrossRef]
- Mark, D.M.; Smith, B.; Tversky, B. Ontology and geographic objects: An empirical study of cognitive categorization. In Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information Science; Springer-Verlag: Berlin Heidelberg, Germany, 1999; pp. 283–298. [Google Scholar]
- Cresswell, T. Place: An Introduction; John Wiley & Sons: New York, NY, USA, 2014. [Google Scholar]
- Agnew, J. Place and Politics: The Geographical Mediation of State and Society; Routledge: Abingdon, UK, 1987; Volume 3. [Google Scholar]
- Wang, Y.; Jiang, W.; Liu, S.; Ye, X.; Wang, T. Evaluating trade areas using social media data with a calibrated huff model. ISPRS Int. J. Geo-Inf. 2016, 5, 112. [Google Scholar] [CrossRef]
- Vasardani, M.; Winter, S.; Richter, K.-F. Locating place names from place descriptions. Int. J. Geogr. Inf. Sci. 2013, 27, 2509–2532. [Google Scholar] [CrossRef]
- Bailey, T.C.; Gatrell, A.C. Interactive Spatial Data Analysis; Longman Scientific & Technical Essex: Harlow, UK, 1995; Volume 413. [Google Scholar]
- Brunsdon, C. Estimating probability surfaces for geographical point data: An adaptive kernel algorithm. Comput. Geosci. 1995, 21, 877–894. [Google Scholar] [CrossRef]
- O’Sullivan, D.; Wong, D.W. A surface-based approach to measuring spatial segregation. Geogr. Anal. 2007, 39, 147–168. [Google Scholar] [CrossRef]
- Thurstain-Goodwin, M.; Unwin, D. Defining and delineating the central areas of towns for statistical monitoring using continuous surface representations. Trans. GIS 2000, 4, 305–317. [Google Scholar] [CrossRef]
- Huang, Q.; Xu, C. A data-driven framework for archiving and exploring social media data. Ann. GIS 2014, 20, 265–277. [Google Scholar] [CrossRef]
- Census. District of columbia—Core Based Statistical Areas (CBSAs) and Counties. 2013. Available online: https://www2.census.gov/geo/maps/metroarea/stcbsa_pg/Feb2013/cbsa2013_DC.pdf (accessed on 27 October 2017).
- Census. Maryland—Core Based Statistical Areas (CBSAs) and Counties. 2013. Available online: https://www2.census.gov/geo/maps/metroarea/stcbsa_pg/Feb2013/cbsa2013_MD.pdf (accessed on 27 October 2017).
- GNIS. US geographic names information system. Available online: http://geonames.usgs.gov/ (accessed on 27 October 2017).
Selected Places | Metropolitan Areas | Cities | Neighborhoods | |||
---|---|---|---|---|---|---|
Washington | Baltimore | Rockville | Bethesda | Ballston | Clarendon | |
Total number of tweets (nation-wide) | 2,092,350 | 535,724 | 29,869 | 36,498 | 3334 | 9105 |
Number and percentage of geo-tagged tweets (nation-wide) | 39,601 (1.89%) | 15,406 (2.87%) | 1761 (5.90%) | 2393 (6.55%) | 244 (7.31%) | 380 (4.17%) |
Number of geo-tagged tweets within the six-state boundary | 21,772 | 12,471 | 1556 | 1137 | 238 | 169 |
Final number of geo-tagged tweets used for the analysis | 6835 | 3016 | 1556 | 1137 | 238 | 169 |
Washington, DC | Baltimore, MD | ||
---|---|---|---|
Source | Count | Source | Count |
Twitter for iPhone | 16,795 | Twitter for iPhone | 4608 |
Foursquare | 8373 | Foursquare | 3265 |
Twitter for Android | 8081 | 2173 | |
6275 | Twitter for Android | 1692 | |
Safetweet By Tweetmyjobs | 804 | Safetweet By Tweetmyjobs | 1002 |
Twitter for Blackberry® | 667 | Baltimore 311 | 803 |
Twitter for iPad | 604 | dlvr.it | 772 |
Hipstamatic | 207 | Twitzip | 167 |
Goldstar | 178 | Tweetmyjobs | 138 |
IOS | 159 | Twitter for iPad | 96 |
dlvr.it | 158 | Goldstar | 48 |
Twitter for Android Tablets | 154 | Untappd | 40 |
Twitter for Windows Phone | 153 | Screamradius | 40 |
Twitterfeed | 145 | IOS | 40 |
Path | 103 | Twitter for Blackberry® | 37 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, D.W.S.; Huang, Q. “Voting with Their Feet”: Delineating the Sphere of Influence Using Social Media Data. ISPRS Int. J. Geo-Inf. 2017, 6, 325. https://doi.org/10.3390/ijgi6110325
Wong DWS, Huang Q. “Voting with Their Feet”: Delineating the Sphere of Influence Using Social Media Data. ISPRS International Journal of Geo-Information. 2017; 6(11):325. https://doi.org/10.3390/ijgi6110325
Chicago/Turabian StyleWong, David W. S., and Qunying Huang. 2017. "“Voting with Their Feet”: Delineating the Sphere of Influence Using Social Media Data" ISPRS International Journal of Geo-Information 6, no. 11: 325. https://doi.org/10.3390/ijgi6110325
APA StyleWong, D. W. S., & Huang, Q. (2017). “Voting with Their Feet”: Delineating the Sphere of Influence Using Social Media Data. ISPRS International Journal of Geo-Information, 6(11), 325. https://doi.org/10.3390/ijgi6110325