Performance Evaluation and Optimization of 3D Gaussian Splatting in Indoor Scene Generation and Rendering
Abstract
:1. Introduction
2. Methods
2.1. 3D Rendering Algorithms-NeRF(Instant-NGP)
2.1.1. Volume Rendering
2.1.2. Multi-Resolution Hash Encoding
2.2. 3D Rendering Algorithms-3DGS
2.3. Evaluation Indices
2.3.1. PSNR
2.3.2. SSIM
2.3.3. LPIPS
2.4. Test Data Preparation
3. Results
3.1. Image Data Acquisition and Preprocessing
3.2. Algorithm Performance Comparison
3.2.1. Comparison of Rendering Time and Results Among Four Algorithms
3.2.2. Comparison of Reconstruction Results with Varying Image Quantities
3.2.3. Comprehensive Evaluation of 3DGS Performance
3.3. Parameter Tuning
3.3.1. Comparison of the Effects of the 3DGS Algorithm on Images of Different Resolutions
3.3.2. Comparison of the Effects of the 3DGS Algorithm with Different Thresholds for the Average Magnitude of Spatial Position Gradients
3.3.3. Comparison of the Effects of the 3DGS Algorithm Under Different Scaling Learning Rates (Scaling_lr)
3.3.4. Comparison of the Effects of the 3DGS Algorithm Under Different Hyperparameter Settings for Controlling the Density Level (p)
3.3.5. Ranking of Sensitivity for Four Parameters
3.3.6. Optimization Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tran, H.; Khoshelham, K.; Kealy, A.; Díaz-Vilariño, L. Shape Grammar Approach to 3D Modeling of Indoor Environments Using Point Clouds. J. Comput. Civ. Eng. 2019, 33, 04018055. [Google Scholar] [CrossRef]
- Naseer, M.; Khan, S.; Porikli, F. Indoor scene understanding in 2.5/3D for autonomous agents: A survey. IEEE Access 2018, 7, 1859–1887. [Google Scholar] [CrossRef]
- Jacq, K.; Ployon, E.; Rapuc, W.; Claire, B.; Cécile, P.; Didier, C.; Fanget, B. Structure-from-motion, multi-view stereo photogrammetry applied to line-scan sediment core images. J. Paleolimnol. 2021, 66, 249–260. [Google Scholar] [CrossRef]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Jonathan, T.B.; Ravi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Commun. ACM 2021, 65, 405–421. [Google Scholar] [CrossRef]
- Kerbl, B.; Kopanas, G.; Leimkuehler, T.; Drettakis, G. 3DGS for Real-Time Radiance Field Rendering. ACM Trans. Graph. 2023, 42, 139. [Google Scholar] [CrossRef]
- Zhilu, Y.; You, L.; Shengjun, T.; Ming, L.; Renzhong, G.; Wang, W. A survey on indoor 3D modeling and applications via RGB-D devices. Front. Inf. Technol. Electron. Eng. 2021, 22, 815–826. [Google Scholar]
- Li, J.K. UAV Oblique Photography Model and Single-Dimensional Treatment. J. Geol. Hazards Environ. Preserv. 2020, 31, 95–99. [Google Scholar]
- Ye, J.; Yan, C.; Jianing, Q. Interior Soft Decoration Product Design Based on 3D Modeling and Image Processing Technology. Mob. Inf. Syst. 2022, 2022, 9095614. [Google Scholar]
- Zavar, H.; Arefi, H.; Malihi, S.; Maboudi, M. Topology-Aware 3D Modelling of Indoor Spaces from Point Clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 43, 267–274. [Google Scholar] [CrossRef]
- Wang, J.; Shoudong, H.; Liang, Z.; Janet, G.; Sean, H.; Chengqi, Z.; Wang, X. High quality 3D reconstruction of indoor environments using RGB-D sensors. In Proceedings of the 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 1739–1744. [Google Scholar] [CrossRef]
- Cui, Y.; Li, Q.; Yang, B.; Wen, X.; Chi, C.; Dong, Z. Automatic 3-D Reconstruction of Indoor Environment With Mobile Laser Scanning Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3117–3130. [Google Scholar] [CrossRef]
- Liu, J.; Luo, J.; Hou, J.; Danqi, W.; Guoqiang, F.; Zhang, X. A BIM Based Hybrid 3D Indoor Map Model for Indoor Positioning and Navigation. ISPRS Int. J. Geo Inf. 2020, 9, 747. [Google Scholar] [CrossRef]
- Poux, F.; Neuville, R.; Nys, G.-A.; Billen, R. 3D Point Cloud Semantic Modelling: Integrated Framework for Indoor Spaces and Furniture. Remote Sens. 2018, 10, 1412. [Google Scholar] [CrossRef]
- Kang, Z.; Yang, J.; Yang, Z.; Cheng, S. A Review of Techniques for 3D Reconstruction of Indoor Environments. ISPRS Int. J. Geo Inf. 2020, 9, 330. [Google Scholar] [CrossRef]
- Yang, P. Research on Image Matching and SFM 3D Reconstruction Method in Mine Environment. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2022. [Google Scholar]
- Chen, D.; Wan, L.; Hu, F.; Li, J.; Chen, Y.; Shen, Y.; Peethambaran, J. Semantic-aware room-level indoor modeling from point clouds. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103685. [Google Scholar] [CrossRef]
- Miao, Y.; Chang, L.; Jun, Q. Neural Radiance Field-Based Light Field Super-Resolution in Angular Domain. Acta Opt. Sin. 2023, 43, 1411001. [Google Scholar]
- Zhang, P.; Hu, G.; Chen, M.; Emam, M. Ambient-NeRF: Light Train Enhancing Neural Radiance Fields in Low-Light Conditions with Ambient-Illumination. Multimed. Tools Appl. 2024, 83, 80007–80023. [Google Scholar] [CrossRef]
- Zimny, D.; Waczyńska, J.; Trzciński, T.; Spurek, P. Points2NeRF: Generating Neural Radiance Fields from 3D Point Cloud. Pattern Recognit. Lett. 2024, 185, 8–14. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, Z.; Mao, T.; Wang, Z.; Li, Z. NeRF-based Polarimetric Multi-view Stereo. Pattern Recognit. 2024, 158, 111036. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, J.; Ge, J. Dip-NeRF: Depth-Based Anti-Aliased Neural Radiance Fields. Electronics 2024, 13, 1527. [Google Scholar] [CrossRef]
- Thomas, M.; Evans, A.; Schied, C.; Keller, A. Instant Neural Graphics Primitives with a Multiresolution Hash Encoding. Trans. Graph. 2022, 41, 1–15. [Google Scholar]
- Li, Q.; Wang, Z.; Jie, L.; Hu, Y.; Deng, R.; Zhang, H. Dynamic Wind Turbine Blade 3D Model Reconstruction with Event Camera. In Proceedings of the UNIfied Conference of DAMAS, IncoME and TEPEN Conferences (UNIfied 2023), Huddersfield, UK, 29 August–1 September 2023; Ball, A.D., Ouyang, H., Sinha, J.K., Wang, Z., Eds.; Mechanisms and Machine Science, 152. Springer: Cham, Switzerland, 2024. [Google Scholar]
- Wang, P.; Liu, L.; Liu, Y.; Theobalt, C.; Komura, T.; Wang, W. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. arXiv 2021, arXiv:2106.10689. [Google Scholar]
- Yariv, L.; Gu, J.; Kasten, Y.; Lipman, Y. Volume Rendering of Neural Implicit Surfaces. In Proceedings of the 2021 Conference on Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021. [Google Scholar]
- Prokopetc, K.; Dupont, R. Towards Dense 3D Reconstruction for Mixed Reality in Healthcare: Classical Multi-View Stereo vs Deep Learning. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2061–2069. [Google Scholar]
- Lu, Y.; Wang, S.; Fan, S.; Lu, J.; Li, P.; Tang, P. Image-based 3D reconstruction for Multi-Scale Civil and Infrastructure Projects: A Review from 2012 to 2022 with New Perspective from Deep Learning Methods. Adv. Eng. Inform. 2024, 59, 102268. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Zhu, W.; Yu, B.; Zhao, Y.; Wan, C.; You, H.; Shi, H.; Lin, Y. Instant-3D: Instant Neural Radiance Field Training Towards On-Device AR/VR 3D Reconstruction. In Proceedings of the 50th Annual International Syposium on Computer Architecture (ISCA’23), Orlando, FL, USA, 17–21 June 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 1–13. [Google Scholar]
- Croce, V.; Billi, D.; Caroti, G.; Piemonte, A.; De Luca, L.; Véron, P. Comparative Assessment of Neural Radiance Fields and Photogrammetry in Digital Heritage: Impact of Varying Image Conditions on 3D Reconstruction. Remote Sens. 2024, 16, 301. [Google Scholar] [CrossRef]
- Ge, Y.; Guo, B.; Zha, P.; Jiang, S.; Jiang, Z.; Li, D. 3D Reconstruction of Ancient Buildings Using UAV Images and Neural Radiation Field with Depth Supervision. Remote Sens. 2024, 16, 473. [Google Scholar] [CrossRef]
- Wang, X.; Yin, Z.; Zhang, F.; Feng, D.; Wang, Z. MP-NeRF: More Refined Deblurred Neural Radiance Field for 3D Reconstruction of Blurred Images. Knowl. Based Syst. 2024, 290, 111571. [Google Scholar] [CrossRef]
- Wu, T.; Yuan, J.Y.; Zhang, X.L.; Yang, J.; Cao, Y.-P.; Yan, L.-Q.; Gao, L. Recent Advances in 3DGS. In Computational Visual Media; Springer: Berlin/Heidelberg, Germany, 2024; Volume 10, pp. 613–642. [Google Scholar]
- Jian, G.; Linzhuo, C.; Qiu, S.; Xun, C.; Yao, Y. Advances in Differentiable Rendering Based on Three-Dimensional Gaussian Splatting (Invited). Laser Optoelectron. Prog. 2024, 61, 1611010. [Google Scholar]
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Isola, P.; Efros, A.A.; Shechtman, E.; Wang, O. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 586–595. [Google Scholar]
Number of Images (Sheets). | Iteration Count. | Times (min) | LPIPS | PSNR | SSIM |
---|---|---|---|---|---|
110 | 7 k | 12 | 0.360 | 22.874 | 0.802 |
15 k | 32 | 0.275 | 25.418 | 0.844 | |
60 k | 350 | 0.170 | 29.145 | 0.898 | |
66 | 7 k | 12 | 0.369 | 22.708 | 0.796 |
15 k | 39 | 0.260 | 25.778 | 0.852 | |
60 k | 340 | 0.137 | 30.451 | 0.915 |
Res | Times (min) | LPIPS | PSNR | SSIM |
---|---|---|---|---|
0.3 k | 2 | 0.169 | 25.978 | 0.867 |
0.5 k | 2 | 0.282 | 24.597 | 0.831 |
0.8 k | 4 | 0.355 | 23.650 | 0.806 |
1.2 k | 6 | 0.375 | 23.038 | 0.798 |
1.5 k | 8 | 0.372 | 22.779 | 0.797 |
1.6 k | 12 | 0.360 | 22.708 | 0.796 |
2 k | 18 | 0.358 | 22.680 | 0.799 |
2.9 k | 1662 | 0.334 | 22.530 | 0.806 |
Times (min) | PSNR | SSIM | LPIPS | |
---|---|---|---|---|
0.0001 | 4 | 22.363 | 0.793 | 0.36 |
0.0002 | 4 | 22.708 | 0.796 | 0.36 |
0.0003 | 4 | 22.779 | 0.807 | 0.364 |
0.0004 | 3 | 22.633 | 0.795 | 0.369 |
Scaling_lr | Times (min) | LPIPS | PSNR | SSIM |
---|---|---|---|---|
0.004 | 10 | 0.358 | 22.77 | 0.796 |
0.005 | 10 | 0.36 | 22.708 | 0.796 |
0.006 | 10 | 0.354 | 22.582 | 0.796 |
0.008 | 9 | 0.351 | 22.432 | 0.796 |
p | Times (min) | LPIPS | PSNR | SSIM |
---|---|---|---|---|
0.0005 | 10 | 0.377 | 23.017 | 0.797 |
0.001 | 10 | 0.36 | 23.178 | 0.799 |
0.002 | 11 | 0.369 | 22.893 | 0.793 |
0.01 | 10 | 0.36 | 22.708 | 0.796 |
0.1 | 10 | 0.382 | 21.522 | 0.786 |
Parameter | PSNR | SSIM | LPIPS |
---|---|---|---|
Res | +0.942 | +0.01 | −0.005 |
p | +0.47 | +0.003 | 0 |
+0.071 | +0.011 | +0.004 | |
Scaling_lr | 0 | 0 | 0 |
p | Res | Times (min) | LPIPS | PSNR | SSIM | |
---|---|---|---|---|---|---|
0.001 | 0.003 | 0.8 k | 10 | 0.36 | 23.694 | 0.798 |
0.01 | 0.002 | 1.6 k | 10 | 0.36 | 22.708 | 0.796 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Zhang, Y.; Tan, H.; Liu, C.; Yang, X. Performance Evaluation and Optimization of 3D Gaussian Splatting in Indoor Scene Generation and Rendering. ISPRS Int. J. Geo-Inf. 2025, 14, 21. https://doi.org/10.3390/ijgi14010021
Fang X, Zhang Y, Tan H, Liu C, Yang X. Performance Evaluation and Optimization of 3D Gaussian Splatting in Indoor Scene Generation and Rendering. ISPRS International Journal of Geo-Information. 2025; 14(1):21. https://doi.org/10.3390/ijgi14010021
Chicago/Turabian StyleFang, Xinjian, Yingdan Zhang, Hao Tan, Chao Liu, and Xu Yang. 2025. "Performance Evaluation and Optimization of 3D Gaussian Splatting in Indoor Scene Generation and Rendering" ISPRS International Journal of Geo-Information 14, no. 1: 21. https://doi.org/10.3390/ijgi14010021
APA StyleFang, X., Zhang, Y., Tan, H., Liu, C., & Yang, X. (2025). Performance Evaluation and Optimization of 3D Gaussian Splatting in Indoor Scene Generation and Rendering. ISPRS International Journal of Geo-Information, 14(1), 21. https://doi.org/10.3390/ijgi14010021