Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methodology
2.3.1. Assessment and Gradation of Ecological Vulnerability
2.3.2. Tupu Analysis of Ecological Vulnerability
2.3.3. Cold-Hot Spot Study Change Analysis
2.3.4. Spatial Correlation Analysis between EVSI and Urbanization Level
3. Results
3.1. Spatial and Temporal Changes of Ecological Vulnerability
3.2. Transformation of EVI
3.3. Spatial Heterogeneity Analysis of Ecological Vulnerability
3.4. Determinant Factors of EVI
3.5. Changes of NDVI and Afforestation Area
3.6. Impact of Urbanization on Ecological Vulnerability
4. Discussion
4.1. The Spatial-Temporal Patterns of Ecological Vulnerability
4.2. Probable Driving Factors of Ecological Vulnerability
4.3. Sustainable Implications for Ecosystems Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Zhang, X. Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016. Sci. Rep. 2020, 10, 17952. [Google Scholar] [CrossRef] [PubMed]
- Sandi, S.G.; Rodriguez, J.F.; Saintilan, N.; Wen, L.; Kuczera, G.; Riccardi, G.; Saco, P.M. Resilience to drought of dryland wetlands threatened by climate change. Sci. Rep. 2020, 10, 13232. [Google Scholar] [CrossRef] [PubMed]
- Alewell, C.; Ringeval, B.; Ballabio, C.; Robinson, D.A.; Panagos, P.; Borrelli, P. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 2020, 11, 4546. [Google Scholar] [CrossRef]
- Li, J.; Xu, B.; Yang, X.; Qin, Z.; Zhao, L.; Jin, Y.; Zhao, F.; Guo, J. Historical grassland desertification changes in the Horqin Sandy Land, Northern China (1985–2013). Sci. Rep. 2017, 7, 3009. [Google Scholar] [CrossRef] [Green Version]
- Albouy, C.; Delattre, V.; Donati, G.; Frölicher, T.L.; Albouy-Boyer, S.; Rufino, M.; Pellissier, L.; Mouillot, D.; Leprieur, F. Global vulnerability of marine mammals to global warming. Sci. Rep. 2020, 10, 548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beroya-Eitner, M.A. Ecological vulnerability indicators. Ecol. Indic. 2016, 60, 329–334. [Google Scholar] [CrossRef]
- Wang, R.H.; Fan, Z.L. Study on the evaluation of ecological frangibility of Tarim River Basin. Arid Environ. Monit. 1998, 12, 39–44. [Google Scholar]
- Xu, J.; Li, G.; Wang, Y. Review of domestic and international research on ecological vulnerability and outlook. East China Econ. Manag. 2016, 30, 149–162. [Google Scholar]
- Leclerc, C.; Courchamp, F.; Bellard, C. Future climate change vulnerability of endemic island mammals. Nat. Commun. 2020, 11, 4943. [Google Scholar] [CrossRef]
- David, C.; Anne, E.-G.; Régis, V.; François, D. A new multimetric index for the evaluation of water ecological quality of French Guiana streams based on benthic diatoms. Ecol. Indic. 2020, 113, 106248. [Google Scholar]
- Mumini, D.; Danny, S.; Cosmas, M. Assessment of ecological vulnerability to climate variability on coastal fishing communities: A study of Ungwana Bay and Lower Tana Estuary, Kenya. Ocean Coast. Manag. 2018, 163, 437–444. [Google Scholar]
- Ying, L.; Ge, G.; Lianchun, S. Understanding of Disaster Risk and the Management Associated with Climate Change in IPCC AR5. Adv. Clim. Chang. Res. 2014, 10, 260. [Google Scholar]
- Bryan, B.; Harvey, N.; Belperio, T.; Bourman, B. Distributed process modeling for regional assessment of coastal vulnerability to sea-level rise. Environ. Modeling Assess. 2001, 6, 57–65. [Google Scholar] [CrossRef]
- Liquete, C.; Zulian, G.; Delgado, I.; Stips, A.; Maes, J. Assessment of coastal protection as an ecosystem service in Europe. Ecol. Indic. 2013, 30, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Chang, H. A bibliometric analysis of the progress of ecological vulnerability research in China. J. Geogr. 2012, 67, 1515–1525. [Google Scholar]
- Li, H.; Jing, S.; Yang, Z. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar]
- Lu, Y.; Hua, C.; Wang, J. Land use change and its ecological effects in a typical area of the Northeast agricultural and pastoral intercrossing belt. China Popul. Resour. Environ. 2006, 16, 58–62. [Google Scholar]
- Zeng, J.; Shi, Z.; Liu, X.; Chen, Y.; Chang, L. Vulnerability assessment of urban water sources in the plateau basin. China Rural Water Conserv. Hydropower 2013, 9, 12–15. [Google Scholar]
- Wang, J.; Duan, S.; Zhang, L.; Shi, P.; Ou, F. Study on Water Resources Vulnerability Assessment of Urban Water Sources in Yunnan Plateau—Taking the Qing Shuihai Water Source as an Example. China Rural Water Resour. Hydropower 2019, 11, 5–9. [Google Scholar]
- Wei, W.; Shi, S.; Zhang, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Regional-scale assessment of environmental vulnerability in an arid inland basin. Ecol. Indic. 2020, 109, 105792. [Google Scholar] [CrossRef]
- Jiang, L.; Huang, X.; Wang, F.; Liu, Y.; An, P. Method for evaluating ecological vulnerability under climate change based on remote sensing: A case study. Ecol. Indic. 2018, 85, 479–486. [Google Scholar] [CrossRef]
- Xue, L.; Wang, J.; Wei, G. Evaluation of ecological vulnerability of Tarim River basin based on PSR model. J. Hebei Univ. 2019, 47, 13–19. [Google Scholar]
- Nguyen, A.K.; Liou, Y.; Li, M.; Tran, T.A. Zoning eco-environmental vulnerability for environmental management and protection. Ecol. Indic. 2016, 69, 100–117. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Li, S.; Li, J.; Duan, P. Dynamic evaluation of ecological vulnerability in a lake watershed based on rs and gis technology. Pol. J. Environ. Stud. 2019, 28, 1785–1798. [Google Scholar] [CrossRef]
- Mei, H. Dynamic and comprehensive evaluation of the effectiveness of provincial plantation in China and analysis of influencing factors. J. Ecol. 2019, 38, 3577–3584. [Google Scholar]
- Forestry Law of the People’s Republic of China. Available online: https://www.wenmi.com/article/py5wxu059ksv.html/ (accessed on 30 April 2021).
- Yang, J.; Zhang, Y.; Gao, X. Study on Benefits of Soil and Water Conservation by Closing Hill for Afforestation. Res. Soil Water Conserv. 2001, 3, 5. [Google Scholar]
- Zhang, Z. Effects of Closing the Land for Reforestation on Water Holding Capacity of Litter Layer in Larix principis-rupprechtii Forest. Prot. For. Sci. Technol. 2019, 5, 8–9, 16. [Google Scholar] [CrossRef]
- Sun, M. An analysis of the application of closed mountain forestry in the construction of forestry ecological projects. Agric. Sci. Technol. Inf. 2020, 36, 39. [Google Scholar]
- Qiu, G.Y.; Huang, W.S. A brief discussion on the technical management and measures of closed forestry. South. Agric. 2019, 13, 47–48. [Google Scholar]
- Qiu, R. The use of closed mountain forestry in forestry ecological engineering construction. Agric. Sci. Technol. 2019, 12, 154. [Google Scholar]
- Xu, J. The Effect of Forest Closure on Plant Diversity in Several Small Watersheds. Doctoral dissertation. Huazhong Agric. Univ. 2012. [Google Scholar] [CrossRef]
- Zhang, Y. Analysis on Contribution of Artificial Afforestation to Forest Coverage. J. Northeast For. Univ. 2007, 3, 76–78. [Google Scholar]
- Li, X.; Zhang, C. Effect of natural and artificial afforestation reclamation on soil properties and vegetation in coastal saline silt soils. Catena 2020. [Google Scholar] [CrossRef]
- Liu, X.S.; Li, X.; Sun, T. Comprehensive benefit evaluation of forestry ecological construction projects in Dengkou County, Inner Mongolia. J. Ecol. 2017, 37, 6196–6204. [Google Scholar]
- Ma, J.L.; Dong, D.E.H. Closure of mountains for forestry is an effective way to cultivate forests in Sanjiangyuan. In Proceedings of the 2005 CCSA Academic Conference 26 Session (1), Urumqi, Xinjiang, China, 20–23 August 2005. [Google Scholar]
- Yao, G. Analysis of the pros and cons of green forestation on ecological construction. Henan Agric. 2020, 35, 47–48. [Google Scholar]
- The Tibet Forestry and Grassland Bureau. Available online: http://www.xzly.gov.cn/article/4739 (accessed on 10 October 2020).
- Yi, S.; Song, C.; Heki, K.; Kang, S.; Wang, Q.; Chang, L. Satellite-observed monthly glacier and snow mass changes in southeast Tibet: Implication for substantial meltwater contribution to the Brahmaputra. Cryosphere 2020, 14, 2267–2281. [Google Scholar] [CrossRef]
- Yu, G.; Lu, J.; Lyu, L.; Han, L.; Wang, Z. Mass flows and river response in rapid uplifting regions—A case of lower Yarlung Tsangpo basin, southeast Tibet, China. Int. J. Sediment Res. 2020, 35, 609–620. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Shen, Y.; Jia, W.; Li, J. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. CATENA 2016, 147, 789–796. [Google Scholar] [CrossRef]
- Lin, Q.; Xu, L.; Hou, J.; Liu, Z.; Jeppesen, E.; Han, B. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming. Water Res. 2017, 124, 618–629. [Google Scholar] [CrossRef]
- Bing, G.; Weihua, K.; Lin, J.; Fan, Y. Analysis of temporal and spatial changes and driving mechanisms of ecosystem vulnerability in the alpine ecological zone of the Qinghai-Tibet Plateau. Ecol. Sci. 2018, 37, 96–106. [Google Scholar]
- Wang, Y.; Ren, Z.; Ma, P.; Wang, Z.; Niu, D.; Fu, H.; James, J. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 722, 137910. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar]
- Ni, H.; Jin-Sheng, H.; Zheng, N. Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecol. Indic. 2013, 26, 117–125. [Google Scholar]
- Zhou, J.; Yuan, L.; Yang, Z.; Jian, J.; Liu, Y.; Hong, J. Remote sensing-based meteorological assessment of ecological quality in the Everest region. Grassl. Sci. 2014, 31, 1014–1021. [Google Scholar]
- Zhou, W.; Zhong, X.; Zeng, Y. Ecological risk assessment and management strategies in agricultural and pastoral areas of the Tibetan plateau: A case study of Zafeng County in Shannan. Agric. Res. Arid Reg. 2006, 24, 164–169. [Google Scholar]
- Liu, J.; Lu, G.; Yang, H.; Dang, T.; Yan, Z. Ecological impact assessment of 110 micropollutants in the Yarlung Tsangpo River on the Tibetan Plateau. J. Environ. Manag. 2020, 262, 110291. [Google Scholar] [CrossRef] [PubMed]
- Fayiah, M.; Dong, S.; Khomera, S.W.; Ur Rehman, S.A.; Yang, M.; Xiao, J. Status and Challenges of Qinghai–Tibet Plateau’s Grasslands: An Analysis of Causes, Mitigation Measures, and Way Forward. Sustainability 2020, 12, 1099. [Google Scholar] [CrossRef] [Green Version]
- Shannan Tibet Statistical Yearbook. 2018. Available online: https://www.yearbookchina.com/navibooklist-n3018111419-1.html/ (accessed on 25 June 2020).
- Wangmo, L.; Shanji, C.; Lajen Tsering, L. Climatic characteristics of Shannan region of Tibet. J. Ecol. Environ. 2011, 20, 109–113. [Google Scholar]
- Wolfslehner, B.; Vacik, H. Evaluating sustainable forest management strategies with the analytic network process in a pressure-state-response framework. Environ. Manag. 2008, 88, 1–10. [Google Scholar] [CrossRef]
- Kan, A.K.; Li, G.Q.; Yang, X.; Zeng, Y.L.; Tesren, L.; He, J. Ecological vulnerability analysis of Tibetan towns with tourism-based economy: A case study of the Bayi District. J. Mt. Sci. 2018, 15, 1101–1114. [Google Scholar] [CrossRef]
- Liou, Y.A. Assessing spatiotemporal eco-environmental vulnerability by Landsat data. Ecol. Indic. 2017, 80, 52. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.M.B.; Sanches Fernandes, L.F.; Vitor Cortes, R.M.; Leal Pacheco, F.A. Hydrologic impacts of land use changes in the Sabor River Basin: A historical view and future perspectives. Water 2019, 11, 1464. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Research on Ecological Vulnerability Evaluation Method and Model Based on 3S Technology in Shanxi Province. Ph.D. Dissertation, Shanxi Agriculture University, Shanxi, China, 2014. [Google Scholar]
- Yu, B.; Lv, C. Ecological vulnerability assessment in the alpine region of the Tibetan Plateau. Geogr. Res. 2011, 30, 2289–2295. [Google Scholar]
- Lyu, X. Geo-spectrum characteristics of land use change in Jiangsu Province, China. Chin. J. Appl. Ecol. 2016, 27, 1077–1084. [Google Scholar]
- Muyibul, Z.; Jianxin, X.; Muhtar, P.; Qingdong, S.; Run, Z. Spatiotemporal changes of land use/cover from 1995 to 2015 in an oasis in the middle reaches of the Keriya River, southern Tarim Basin, Northwest China. Catena 2018, 171, 416–425. [Google Scholar] [CrossRef]
- Luo, G.P.; Chen, H.; Hu, R.J. Vegetation changes on the northern slope of Tianshan Mountain in the last 10a based on AVHRRNOAA images. Glacial Permafr. 2003, 25, 237–242. [Google Scholar]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2019, 650, 2051–2062. [Google Scholar] [CrossRef]
- Pang, G.; Wang, X.; Yang, M. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat. Int. 2017, 444, 87–96. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; He, B. A study of cover change in Anhui Province based on MODIS and AVHRR data. China Agric. Meteorol. 2007, 28, 338–341. [Google Scholar]
- Chen, J.; Chen, Z.; Ma, Z.; Zeng, Y.; Yi, H. Research on Intensive Utilization of Land Resources in the Process of Urbanization—Taking Shannan Region in Tibet as an Example. Rural Econ. Technol. 2008, 4, 20–21. [Google Scholar]
- Shuying, B.; Qi, W.; Shi, J.; Lu, Y. Analysis on vegetation coverage change in Shannan, Tibet, China based on remotely sensed data. J. Desert Res. 2015, 35, 1396–1402. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Yang, J.; Lü, X.; Liang, W.; Han, X.; Bezemer, T.M. Home-field advantages of litter decomposition increasewith increasing N deposition rates: A litter and soilperspective. Funct. Ecol. 2017, 31, 1792–1801. [Google Scholar]
- Shannan Tibet Statistical Yearbook. 1990. Available online: https://www.yearbookchina.com/navibooklist-n3018111419-1.html/ (accessed on 25 June 2020).
- Fumin, Y. Analysis of geological survey and environmental problems of water conservancy and hydropower projects in Tibet. Tibet Sci. Technol. 2011, 9, 68–69. [Google Scholar]
- Long, T. Research on the Impact of Hydropower Project Construction on Ecological Environment. Ph.D. Dissertation, Sichuan Agriculture University, Sichuan, China, 2013. [Google Scholar]
- Ying, J. The splendid flower of national unity in Chenna County, Shannan, Tibet. China Border Police 2014, 11, 10–11. [Google Scholar]
- Luzen, L.; Zhilin, C.; Xiangyuan, G. The problems and countermeasures of grassland ecological construction in Shannan, Tibet. J. Tibet. Univ. 2013, 28, 34–37. [Google Scholar]
Year | Principal Component | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|---|
Eigenvalue/% | I | 0.206 | 0.169 | 0.187 | 0.174 | 0.194 | 0.212 |
II | 0.119 | 0.145 | 0.164 | 0.124 | 0.120 | 0.125 | |
III | 0.083 | 0.069 | 0.067 | 0.059 | 0.061 | 0.055 | |
IV | 0.045 | 0.048 | 0.049 | 0.054 | 0.053 | 0.050 | |
V | 0.033 | 0.032 | 0.030 | 0.036 | 0.028 | 0.027 | |
Contribution/% | I | 36.108 | 30.996 | 32.199 | 32.943 | 35.655 | 37.825 |
II | 20.821 | 26.578 | 28.247 | 23.410 | 22.079 | 22.384 | |
III | 14.491 | 12.695 | 11.446 | 11.120 | 11.183 | 9.812 | |
IV | 7.987 | 8.735 | 8.421 | 10.297 | 9.752 | 9.029 | |
V | 5.735 | 5.826 | 5.109 | 6.865 | 5.205 | 4.782 | |
Cumulative contribution/% | I | 36.108 | 30.996 | 32.199 | 32.943 | 35.655 | 37.825 |
II | 56.929 | 57.574 | 60.446 | 56.353 | 57.734 | 60.210 | |
III | 71.419 | 70.269 | 71.893 | 67.473 | 68.917 | 70.021 | |
IV | 79.407 | 79.004 | 80.314 | 77.769 | 78.669 | 79.050 | |
V | 85.142 | 84.830 | 85.422 | 84.635 | 83.874 | 83.832 | |
Weight | I | 0.424 | 0.365 | 0.377 | 0.389 | 0.425 | 0.451 |
II | 0.245 | 0.313 | 0.331 | 0.277 | 0.263 | 0.267 | |
III | 0.170 | 0.150 | 0.134 | 0.131 | 0.133 | 0.117 | |
IV | 0.094 | 0.103 | 0.099 | 0.122 | 0.116 | 0.108 | |
V | 0.067 | 0.069 | 0.060 | 0.081 | 0.062 | 0.057 |
Index | Formula |
---|---|
NDVI | y = 0.0032t − 5.8989 |
Afforestation area | y = 0.0351t − 69.994 |
Index | Year | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
---|---|---|---|---|---|---|---|
EVI&Urbanization | Moran’s I | 0.604 | 0.213 | −0.007 | −0.340 | −0.316 | −0.379 |
|z-Value| | 188.7587 | 76.4382 | 2.8697 | 128.995 | 121.7327 | 139.3639 | |
p-Value | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Li, R.; Shi, Y.; Guo, L. Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China. ISPRS Int. J. Geo-Inf. 2021, 10, 327. https://doi.org/10.3390/ijgi10050327
Jiang Y, Li R, Shi Y, Guo L. Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China. ISPRS International Journal of Geo-Information. 2021; 10(5):327. https://doi.org/10.3390/ijgi10050327
Chicago/Turabian StyleJiang, Yunxiao, Rong Li, Yu Shi, and Luo Guo. 2021. "Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China" ISPRS International Journal of Geo-Information 10, no. 5: 327. https://doi.org/10.3390/ijgi10050327
APA StyleJiang, Y., Li, R., Shi, Y., & Guo, L. (2021). Natural and Political Determinants of Ecological Vulnerability in the Qinghai–Tibet Plateau: A Case Study of Shannan, China. ISPRS International Journal of Geo-Information, 10(5), 327. https://doi.org/10.3390/ijgi10050327