Antibacterial and Mosquito Repellent Potential of Eight Citrus Cultivars and Their Chemical Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Maintenance of Citrus Peels
2.2. Extraction of EOs
2.3. Chemical Analysis of EOs by GC-MS
2.4. Antibacterial Activity
2.5. Mosquito Rearing
2.6. Mosquito Repellency Bioassay
2.7. Statistical Analysis
3. Results
3.1. Percentage Yield of EOs from Citrus Fruit Peels
3.2. Chemical Composition of EOs
3.3. Antibacterial Activity of EOs
3.4. Repellent Activity of EOs Against Aedes aegypti Females
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.; Singh, J.P.; Kaur, A.; Yadav, M.P. Insights into the chemical composition and bioactivities of citrus peel essential oils. Food Res. Int. 2021, 143, 110231. [Google Scholar] [CrossRef]
- Magiorkinis, E.; Beloukas, A.; Diamantis, A. Scurvy: Past, present and future. Eur. J. Intern. Med. 2011, 22, 147–152. [Google Scholar] [CrossRef]
- Mehmood, B.; Dar, K.K.; Ali, S.; Awan, U.A.; Nayyer, A.Q.; Ghous, T.; Andleeb, S. In vitro assessment of antioxidant, antibacterial and phytochemical analysis of peel of Citrus sinensis. Pak. J. Pharm. Sci. 2015, 28, 231–239. [Google Scholar] [PubMed]
- Naseem, S.; Mahmood, S.; Ali, Z. Occurrence of Citrus tristeza virus in Pakistan: A GIS based approach combining host distribution and disease reports. Pak. J. Agric. Sci. 2016, 53, 513–521. [Google Scholar] [CrossRef]
- Kumar, V.; Kaur, R.; Aggarwal, P.; Singh, G. Underutilized citrus species: An insight of their nutraceutical potential and importance for the development of functional food. Sci. Hortic. 2022, 296, 110909. [Google Scholar] [CrossRef]
- Kim, H.-G.; Lim, H.-A.; Kim, S.-Y.; Kang, S.-S.; Lee, H.-Y.; Yun, P.-Y. Development of functional hanji added citrus peel (I)-Hanji added Korean citrus peel. J. Korea Tech. Assoc. Pulp Pap. Ind. 2007, 39, 38–47. [Google Scholar]
- Sharma, N.; Kalra, K.; Oberoi, H.S.; Bansal, S. Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation. Indian J. Microbiol. 2007, 47, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.K.; Mohanty, S.; Pal, A.; Chanotiya, C.S.; Bawankule, D.U. The essential oil from Citrus limetta Risso peels alleviates skin inflammation: In-vitro and in-vivo study. J. Ethnopharmacol. 2018, 212, 86–94. [Google Scholar] [CrossRef]
- Shan, Y. Comprehensive Utilization of Citrus By-Products; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Nannapaneni, R.; Chalova, V.I.; Crandall, P.G.; Ricke, S.C.; Johnson, M.G.; O’Bryan, C.A. Campylobacter and Arcobacter species sensitivity to commercial orange oil fractions. Int. J. Food Microbiol. 2009, 129, 43–49. [Google Scholar] [CrossRef]
- Paw, M.; Begum, T.; Gogoi, R.; Pandey, S.K.; Lal, M. Chemical composition of Citrus limon L. Burmf peel essential oil from North East India. J. Essent. Oil Bear. Plants 2020, 23, 337–344. [Google Scholar] [CrossRef]
- Boughendjioua, H.; Boughendjioua, Z. Chemical composition and biological activity of essential oil of mandarin (Citrus reticulata) cultivated in Algeria. Int. J. Pharm. Sciences. Rev. 2017, 40, 179–184. [Google Scholar]
- Vuuren, S.v.; Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1, 8-cineole alone and in combination. Flavour Fragr. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
- Han, Y.; Chen, W.; Sun, Z. Antimicrobial activity and mechanism of limonene against Staphylococcus aureus. J. Food Saf. 2021, 41, e12918. [Google Scholar] [CrossRef]
- Melkina, O.E.; Plyuta, V.A.; Khmel, I.A.; Zavilgelsky, G.B. The mode of action of cyclic monoterpenes (−)-limonene and (+)-α-pinene on bacterial cells. Biomolecules 2021, 11, 806. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, Z.; Chen, W. Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. Molecules 2019, 25, 33. [Google Scholar] [CrossRef]
- Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. Lwt 2019, 106, 50–56. [Google Scholar] [CrossRef]
- Giatropoulos, A.; Papachristos, D.P.; Kimbaris, A.; Koliopoulos, G.; Polissiou, M.G.; Emmanouel, N.; Michaelakis, A. Evaluation of bioefficacy of three Citrus essential oils against the dengue vector Aedes albopictus (Diptera: Culicidae) in correlation to their components enantiomeric distribution. Parasitol. Res. 2012, 111, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.A.; Thompson, P.A.; Hakim, I.A.; Chow, H.H.S.; Thomson, C.A. d-Limonene: A bioactive food component from citrus and evidence for a potential role in breast cancer prevention and treatment. Oncol. Rev. 2011, 5, 31–42. [Google Scholar] [CrossRef]
- Vieira, A.J.; Beserra, F.P.; Souza, M.C.; Totti, B.M.; Rozza, A.L. Limonene: Aroma of innovation in health and disease. Chem.-Biol. Interact. 2018, 283, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Leite, A.M.; Lima, E.d.O.; Souza, E.L.d.; Diniz, M.d.F.F.M.; Trajano, V.N.; Medeiros, I.A.d. Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Rev. Bras. Ciências Farm. 2007, 43, 121–126. [Google Scholar] [CrossRef]
- Arantes, A.C.S.; Ribeiro, J.C.S.; Soares, D.S.; Reis, A.C.; Cardoso, M.d.G.; Remedio, R.N. Alpha- and beta-pinene isomers act differently to control Rhipicephalus microplus (Acari: Ixodidae). Parasitol. Res. 2024, 123, 164. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 17 December 2024).
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Theuretzbacher, U. Global antibacterial resistance: The never-ending story. J. Glob. Antimicrob. Resist. 2013, 1, 63–69. [Google Scholar] [CrossRef]
- Marasini, B.P.; Baral, P.; Aryal, P.; Ghimire, K.R.; Neupane, S.; Dahal, N.; Singh, A.; Ghimire, L.; Shrestha, K. Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. BioMed Res. Int. 2015, 2015, 265425. [Google Scholar] [CrossRef] [PubMed]
- Lemes, R.S.; Alves, C.C.; Estevam, E.B.; Santiago, M.B.; Martins, C.H.; Santos, T.C.D.; Crotti, A.E.; Miranda, M.L. Chemical composition and antibacterial activity of essential oils from Citrus aurantifolia leaves and fruit peel against oral pathogenic bacteria. An. Acad. Bras. Ciências 2018, 90, 1285–1292. [Google Scholar] [CrossRef]
- Mancuso, M.; Catalfamo, M.; Laganà, P.; Rappazzo, A.C.; Raymo, V.; Zampino, D.; Zaccone, R. Screening of antimicrobial activity of citrus essential oils against pathogenic bacteria and Candida strains. Flavour Fragr. J. 2019, 34, 187–200. [Google Scholar] [CrossRef]
- Nagy, M.M.; Al-Mahdy, D.A.; Abd El Aziz, O.M.; Kandil, A.M.; Tantawy, M.A.; El Alfy, T.S.M. Chemical Composition and Antiviral Activity of Essential Oils from Citrus reshni hort. ex Tanaka (Cleopatra mandarin) Cultivated in Egypt. J. Essent. Oil Bear. Plants 2018, 21, 264–272. [Google Scholar] [CrossRef]
- Edogbanya, P.; Suleiman, M.; Olorunmola, J.; Oijagbe, I. Comparative study on the antimicrobial effects of essential oils from peels of three citrus fruits. MOJ Biol. Med. 2019, 4, 49–54. [Google Scholar]
- Al-Jabri, N.N.; Hossain, M.A. Comparative chemical composition and antimicrobial activity study of essential oils from two imported lemon fruits samples against pathogenic bacteria. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 247–253. [Google Scholar]
- Anwar, T.; Qureshi, H.; Fatima, A.; Sattar, K.; Albasher, G.; Kamal, A.; Ayaz, A.; Zaman, W. Citrus sinensis Peel Oil Extraction and Evaluation as an Antibacterial and Antifungal Agent. Microorganisms 2023, 11, 1662. [Google Scholar] [CrossRef]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Laganà, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. BioFactors 2017, 43, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, K.; Ghasemi, Y.; Ebrahimzadeh, M.A. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci. 2009, 22, 277–281. [Google Scholar]
- Silalahi, J. Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 2002, 11, 79–84. [Google Scholar] [CrossRef]
- Enterazi, M.; Majd, A.; Falahian, F.; Mehrabian, S.; Hasheni, M.; Layimi, A. Antimutagenic and anticancer effects of Citrus medical fruit juice. Acta Med. Iran 2009, 47, 373–377. [Google Scholar]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef]
- Michaelakis, A.; Papachristos, D.; Kimbaris, A.; Koliopoulos, G.; Giatropoulos, A.; Polissiou, M.G. Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol. Res. 2009, 105, 769–773. [Google Scholar] [CrossRef]
- Higuchi, C.T.; Sales, C.C.; Andréo-Filho, N.; Martins, T.S.; Ferraz, H.O.; Santos, Y.R.; Lopes, P.S.; Grice, J.E.; Benson, H.A.E.; Leite-Silva, V.R. Development of a Nanotechnology Matrix-Based Citronella Oil Insect Repellent to Obtain a Prolonged Effect and Evaluation of the Safety and Efficacy. Life 2023, 13, 141. [Google Scholar] [CrossRef] [PubMed]
- Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm. 2009, 372, 105–111. [Google Scholar] [CrossRef]
- Azeem, M.; Zaman, T.; Tahir, M.; Haris, A.; Iqbal, Z.; Binyameen, M.; Nazir, A.; Shad, S.A.; Majeed, S.; Mozūraitis, R. Chemical composition and repellent activity of native plants essential oils against dengue mosquito, Aedes aegypti. Ind. Crops Prod. 2019, 140, 111609. [Google Scholar] [CrossRef]
- Abbas, M.G.; Azeem, M.; Bashir, M.U.; Ali, F.; Mozūratis, R.; Binyameen, M. Chemical Composition, Repellent, and Oviposition Deterrent Potential of Wild Plant Essential Oils against Three Mosquito Species. Molecules 2024, 29, 2657. [Google Scholar] [CrossRef] [PubMed]
- Azhdarzadeh, F.; Hojjati, M. Chemical composition and antimicrobial activity of leaf, ripe and unripe peel of bitter orange (Citrus aurantium) essential oils. Nutr. Food Sci. Res. 2016, 3, 43–50. [Google Scholar] [CrossRef]
- Hamdan, D.; El-Readi, M.; Nibret, E.; Sporer, F.; Farrag, N.; El-Shazly, A.; Wink, M. Chemical composition of the essential oils of two Citrus species and their biological activities. Die Pharm.-Int. J. Pharm. Sci. 2010, 65, 141–147. [Google Scholar]
- Henderson, A.H.; Fachrial, E.; Lister, I.N.E. Antimicrobial activity of lemon (Citrus limon) peel extract against Escherichia coli. Am. Sci. Res. J. Eng. Technol. Sci. 2018, 39, 268–273. [Google Scholar]
- Li, Y.; Liu, S.; Zhao, C.; Zhang, Z.; Nie, D.; Tang, W.; Li, Y. The chemical composition and antibacterial and antioxidant activities of five citrus essential oils. Molecules 2022, 27, 7044. [Google Scholar] [CrossRef] [PubMed]
- Campolo, O.; Romeo, F.V.; Algeri, G.M.; Laudani, F.; Malacrinò, A.; Timpanaro, N.; Palmeri, V. Larvicidal effects of four citrus peel essential oils against the arbovirus vector Aedes albopictus (Diptera: Culicidae). J. Econ. Entomol. 2016, 109, 360–365. [Google Scholar] [CrossRef]
- Akram, W.; Khan, H.A.A.; Hussain, A.; Hafeez, F. Citrus waste-derived essential oils: Alternative larvicides for dengue fever mosquito, Aedes albopictus (Skuse) (Culicidae: Diptera). Pak. J. Zool. 2011, 43, 367–372. [Google Scholar]
- Haris, A.; Azeem, M.; Abbas, M.G.; Mumtaz, M.; Mozūratis, R.; Binyameen, M. Prolonged repellent activity of plant essential oils against dengue vector, Aedes aegypti. Molecules 2023, 28, 1351. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Sarma, R.; Rabha, B.; Khanikor, B. Repellent activity of Citrus essential oils and two constituent compounds against Aedes aegypti. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 621–628. [Google Scholar] [CrossRef]
- Oshaghi, M.; Ghalandari, R.; Vatandoost, H.; Shayeghi, M.; Kamali-Nejad, M.; Tourabi-Khaledi, H.; Abolhassani, M.; Hashemzadeh, M. Repellent effect of extracts and essential oils of Citrus limon (Rutaceae) and Melissa officinalis (Labiatae) against main malaria vector, Anopheles stephensi (Diptera: Culicidae). Iran. J. Public Health 2003, 32, 47–52. [Google Scholar]
- Effiom, O.E.; Avoaja, D.A.; Ohaeri, C.C. Mosquito Repellent Activity Of Phytochemical Extracts From Peels of Citrus Fruit Species. Glob. J. Sci. Front. Res. 2012, 12, 1–8. [Google Scholar]
- Ul Haq, A.; Wang, J. Identification of varieties and biomarkers analyses on essential oils from peels of Citrus L. collected in Pakistan. Pak. J. Bot. 2023, 55, 1407–1418. [Google Scholar]
- Budiarto, R.; Poerwanto, R.; Santosa, E.; Efendi, D. Morphological evaluation and determination keys of 21 citrus genotypes at seedling stage. Biodiversitas J. Biol. Divers. 2021, 22, 3. [Google Scholar] [CrossRef]
- Din, H.; Ghazanfar, S. Rutaceae. Flora Pak. 1980, 132, 10–15. [Google Scholar]
- World Flora Online. Available online: https://www.worldfloraonline.org (accessed on 15 March 2024).
- Flora of Pakistan. Available online: http://www.efloras.org (accessed on 15 March 2024).
- Azeem, M.; Zaman, T.; Abbasi, A.M.; Abid, M.; Mozūratis, R.; Alwahibi, M.S.; Elshikh, M.S. Pesticidal potential of some wild plant essential oils against grain pests Tribolium castaneum (Herbst, 1797) and Aspergillus flavus (Link, 1809). Arab. J. Chem. 2022, 15, 103482. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Patil, R.A.; Weatherly, C.A.; Armstrong, D.W. Chiral Gas Chromatography. In Chiral Analysis, 2nd ed.; Polavarapu, P.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 468–505. [Google Scholar]
- Parveen, A.; Abbas, M.G.; Keefover-Ring, K.; Binyameen, M.; Mozūraitis, R.; Azeem, M. Chemical Composition of Essential Oils from Natural Populations of Artemisia scoparia Collected at Different Altitudes: Antibacterial, Mosquito Repellent, and Larvicidal Effects. Molecules 2024, 29, 1359. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.G.; Haris, A.; Binyameen, M.; Nazir, A.; Mozūratis, R.; Azeem, M. Chemical composition, larvicidal and repellent activities of wild plant essential oils against Aedes aegypti. Biology 2022, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Kamal, G.M.; Ashraf, M.Y.; Hussain, A.I.; Shahzadi, A.; Chughtai, M.I. Antioxidant potential of peel essential oils of three Pakistani citrus species: Citrus reticulata, Citrus sinensis and Citrus paradisii. Pak. J. Bot. 2013, 45, 1449–1454. [Google Scholar]
- Sanei-Dehkordi, A.; Sedaghat, M.M.; Vatandoost, H.; Abai, M.R. Chemical compositions of the peel essential oil of Citrus aurantium and its natural larvicidal activity against the malaria vector Anopheles stephensi (Diptera: Culicidae) in comparison with Citrus paradisi. J. Arthropod-Borne Dis. 2016, 10, 577. [Google Scholar]
- Meryem, S.; Mohamed, D.; Nour-eddine, C.; Faouzi, E. Chemical composition, antibacterial and antioxidant properties of three Moroccan citrus peel essential oils. Sci. Afr. 2023, 20, e01592. [Google Scholar] [CrossRef]
- Yaldiz, G.; Camlica, M.; Ozen, F. Biological value and chemical components of essential oils of sweet basil (Ocimum basilicum L.) grown with organic fertilization sources. J. Sci. Food Agric. 2019, 99, 2005–2013. [Google Scholar] [CrossRef]
- Hussain, A.I.; Anwar, F.; Hussain Sherazi, S.T.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem 2008, 108, 986–995. [Google Scholar] [CrossRef]
- Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece. Molecules 2013, 18, 10639–10647. [Google Scholar] [CrossRef]
- Mohammed, A.; Ibrahim, M.; Omran, A.A.; Mohamed, E.; Elsheikh, S.E. Minerals content, essential oils composition and physicochemical properties of Citrus jambhiri Lush. (Rough Lemon) from the Sudan. Int. Lett. Chem. Phys. Astron. 2013, 9, 25–30. [Google Scholar] [CrossRef]
- Tao, N.G.; Liu, Y.J.; Zhang, M.l. Chemical composition and antimicrobial activities of essential oil from the peel of bingtang sweet orange (Citrus sinensis Osbeck). Int. J. Food Sci. Technol. 2009, 44, 1281–1285. [Google Scholar] [CrossRef]
- Goyal, L.; Kaushal, S. Evaluation of chemical composition and antioxidant potential of essential oil from Citrus reticulata fruit peels. Adv. Res. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Teneva, D.; Denkova-Kostova, R.; Goranov, B.; Hristova-Ivanova, Y.; Slavchev, A.; Denkova, Z.; Kostov, G. Chemical composition, antioxidant activity and antimicrobial activity of essential oil from Citrus aurantium L zest against some pathogenic microorganisms. Z. Für Naturforschung C 2019, 74, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Poudel, K.; Limbu, S.K.; Dahal, G.; Pokhrel, S. Phytochemical screening, GC analysis and antibacterial activity of citrus limon peel extract and essential oil. J. Nepal Chem. Soc. 2022, 43, 69–75. [Google Scholar] [CrossRef]
- Sajid, A.; Sarfraz, R.A.; Hanif, M.A.; Shahid, M. Evaluation of Chemical Composition and Biological Activities of Citrus pseudolimon and Citrus grandis Peel Essential Oils. J. Chem. Soc. Pak. 2016, 38, 266. [Google Scholar]
- Kvittingen, L.; Sjursnes, B.J.; Schmid, R. Limonene in Citrus: A String of Unchecked Literature Citings? J. Chem. Educ. 2021, 98, 3600–3607. [Google Scholar] [CrossRef]
- Mahmoud, E.A. Essential oils of Citrus fruit peels antioxidant, antibacterial and additive value as food preservative. J. Food Dairy Sci. 2017, 8, 111–116. [Google Scholar] [CrossRef]
- Job, J.T.; Visakh, N.U.; Pathrose, B.; Alfarhan, A.; Rajagopal, R.; Thayyullathil, J.; Thejass, P.; Ramesh, V.; Narayanankutty, A. Chemical Composition and Biological Activities of the Essential Oil from Citrus reticulata Blanco Peels Collected from Agrowastes. Chem. Biodivers. 2024, 21, e202301223. [Google Scholar] [CrossRef] [PubMed]
- Espina, L.; Somolinos, M.; Lorán, S.; Conchello, P.; García, D.; Pagán, R. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food Control 2011, 22, 896–902. [Google Scholar] [CrossRef]
- Khan, P.; Waheed, A.; Azeem, M.; Parveen, A.; Yameen, M.A.; Iqbal, J.; Ali, M.; Wang, S.; Qayyum, S.; Noor, A.; et al. Essential Oil from Tagetes minuta Has Antiquorum Sensing and Antibiofilm Potential against Pseudomonas aeruginosa Strain PAO1. ACS Omega 2023, 8, 35866–35873. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.-L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.M.; von Wright, A. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Sofrata, A.; Santangelo, E.M.; Azeem, M.; Borg-Karlson, A.K.; Gustafsson, A.; Pütsep, K. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS ONE 2011, 6, e23045. [Google Scholar] [CrossRef]
- Li, Z.H.; Cai, M.; Liu, Y.S.; Sun, P.L.; Luo, S.L. Antibacterial Activity and Mechanisms of Essential Oil from Citrus medica L. var. sarcodactylis. Molecules 2019, 24, 1577. [Google Scholar] [CrossRef]
- Soonwera, M. Efficacy of essential oils from Citrus plants against mosquito vectors Aedes aegypti (Linn.) and Culex quinquefasciatus (Say). J. Agric. Technol. 2015, 11, 669–681. [Google Scholar]
- Kline, D.L.; Bernier, U.R.; Posey, K.H.; Barnard, D.R. Olfactometric evaluation of spatial repellents for Aedes aegypti. J. Med. Entomol. 2003, 40, 463–467. [Google Scholar] [CrossRef]
- Phasomkusolsil, S.; Soonwera, M. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate. Southeast Asian J. Trop. Med. Public Health 2010, 41, 831–840. [Google Scholar] [PubMed]
- Babarinde, S.A.; Kemabonta, K.A.; Olatunde, O.Z.; Ojutiku, E.O.; Adeniyi, A.K. Composition and toxicity of rough lemon (Citrus jambhiri Lush.) rind essential oil against red flour beetle. Acta Ecol. Sin. 2021, 41, 325–331. [Google Scholar] [CrossRef]
- Albabtain, R.; Azeem, M.; Wondimu, Z.; Lindberg, T.; Borg-Karlson, A.K.; Gustafsson, A. Investigations of a possible chemical effect of Salvadora persica chewing sticks. Evid.-Based Complement. Altern. Med. 2017, 2017, 2576548. [Google Scholar] [CrossRef] [PubMed]
EO Type | The Local Name of a Cultivar | Peels Condition | Voucher No | Latin Name | Location | % Yield |
---|---|---|---|---|---|---|
RL | Rough lemon | Fresh | CUHA-465 | Citrus jambhiri Lush | Abbottabad | 0.38 ± 0.04 |
SO | Sour orange | Fresh | CUHA-25 | Citrus aurantium (L.) | Abbottabad | 0.19 ± 0.02 |
BM | Blood malta | Fresh | CUHA-466-1 | Citrus sinensis Osbeck var. Malta | Khanpur | 0.12 ± 0.01 |
SM | Shakri malta | Fresh | CUHA-466-2 | Khanpur | 0.21 ± 0.01 | |
DL | Desi lemon | Fresh | CUHA-467 | Citrus limon (L) Osbeck | Multan | 0.05 ± 0.00 |
GA | Galgal | Fresh | CUHA-468 | Citrus pseudolimon Wester | Haripur | 0.27 ± 0.02 |
FE | Feutrell’s early | Fresh | CUHA-469-1 | Citrus reticulata Blanco var. Mandarin | Sargodha | 0.21 ± 0.01 |
KF | Kinnow | Fresh | CUHA-469-2 | Sargodha | 0.29 ± 0.02 | |
KD | Kinnow | Dried | CUHA-469-2 | Sargodha | 0.35 ± 0.03 |
Identified Compounds | RI | RL | SO | BM | SM | DL | GA | FE | KF | KD |
---|---|---|---|---|---|---|---|---|---|---|
α-Pinene | 927 | 0.4 1 | 0.6 | 0.5 | 0.5 | 2.7 | 0.6 | 0.4 | 0.4 | 0.7 |
Camphene | 942 | 0.3 | ||||||||
Sabinene | 969 | 0.5 | 0.3 | 0.2 | 0.2 | 1.2 | 2.5 | 0.2 | 0.1 | 0.2 |
β-Pinene | 972 | 0.2 | 0.1 | tr | tr | 20.2 | 0.4 | 0.1 | tr | |
β-Myrcene | 988 | 2.3 | 1.8 | 1.7 | 1.8 | 0.8 | 2.7 | 2.2 | 1.5 | 2.1 |
α-Phellandrene | 1002 | 0.1 | 0.2 | 0.2 | 0.3 | 0.1 | 0.2 | 0.1 | 0.9 | 0.7 |
3-Carene | 1008 | tr | 0.3 | 0.4 | 0.1 | |||||
α-Terpinene | 1016 | tr | 0.1 | 0.1 | 0.1 | tr | tr | |||
p-Cymene | 1021 | 8.3 | ||||||||
Limonene | 1032 | 94.5 | 96.1 | 95.3 | 93.3 | 56.2 | 91.5 | 96.4 | 96.7 | 95.2 |
cis-β-Ocimene | 1035 | 0.1 | ||||||||
trans-β-Ocimene | 1047 | 0.1 | 0.1 | 0.2 | 0.1 | tr | ||||
γ-Terpinene | 1058 | tr | tr | tr | 0.1 | 1.6 | tr | tr | ||
Terpinolene | 1088 | 0.1 | tr | 0.3 | 0.2 | 0.7 | 0.1 | 0.1 | tr | tr |
Linalool | 1099 | 0.4 | 0.1 | 0.5 | 2.1 | 0.2 | 0.2 | 0.1 | 0.1 | |
Nonanal | 1104 | 0.1 | 0.1 | |||||||
Chrysanthenone | 1106 | 0.2 | ||||||||
β-Citronellal | 1153 | 0.1 | tr | |||||||
Terpinene-4-ol | 1179 | 0.6 | 0.2 | 1.3 | 0.3 | tr | tr | |||
α-Terpineol | 1192 | 0.3 | 1.6 | 0.1 | tr | tr | ||||
Decanal | 1201 | tr | 0.2 | |||||||
Carveol | 1230 | 0.5 | ||||||||
α-Citral | 1270 | 0.6 | ||||||||
δ-Elemene | 1342 | tr | 0.1 | |||||||
Copaene | 1381 | 0.1 | tr | |||||||
trans-β-Caryophyllene | 1426 | 0.1 | tr | tr | 0.4 | 0.1 | tr | |||
trans-α-Bergamotene | 1440 | 0.8 | 0.3 | |||||||
Valencene | 1500 | 0.6 | 0.4 | tr | 0.2 | |||||
β-Bisabolene | 1514 | 1.3 | 0.4 | |||||||
Spathulenol | 0.2 |
EO Types | Enantiomeric Composition % | |
---|---|---|
(R)-(+)-Limonene | (S)-(-)-Limonene | |
RL | 99.51 | 0.49 |
SO | 99.56 | 0.44 |
BM | 99.51 | 0.49 |
SM | 99.46 | 0.54 |
DL | 96.91 | 3.09 |
GA | 99.52 | 0.48 |
FE | 99.36 | 0.64 |
KF | 99.35 | 0.65 |
KD | 99.33 | 0.67 |
Sample | MIC (mg/mL) | |||
---|---|---|---|---|
Gram Positive | Gram Negative | |||
B. subtilis | S. aureus | E. coli | P. aeruginosa (PAO1) | |
RL | 10 | 20 | 5 | 10 |
SO | 5 | 2.5 | 5 | 10 |
BM | 20 | 20 | 5 | 20 |
SM | 20 | 20 | 5 | 20 |
DL | 0.625 | 0.312 | 0.625 | 1.25 |
GA | 20 | 10 | 5 | 20 |
FE | 20 | 10 | 5 | 20 |
KF | 10 | 2.5 | 1.25 | 2.5 |
KD | 5 | 1.25 | 2.5 | 2.5 |
Ciprofloxacin | 0.01 | 0.01 | 0.005 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nawaz, M.; Ullah, B.; Abbas, M.G.; Binyameen, M.; Apšegaitė, V.; Mozūraitis, R.; Azeem, M. Antibacterial and Mosquito Repellent Potential of Eight Citrus Cultivars and Their Chemical Composition. Horticulturae 2025, 11, 9. https://doi.org/10.3390/horticulturae11010009
Nawaz M, Ullah B, Abbas MG, Binyameen M, Apšegaitė V, Mozūraitis R, Azeem M. Antibacterial and Mosquito Repellent Potential of Eight Citrus Cultivars and Their Chemical Composition. Horticulturae. 2025; 11(1):9. https://doi.org/10.3390/horticulturae11010009
Chicago/Turabian StyleNawaz, Mehwish, Bait Ullah, Muhammad Ghazanfar Abbas, Muhammad Binyameen, Violeta Apšegaitė, Raimondas Mozūraitis, and Muhammad Azeem. 2025. "Antibacterial and Mosquito Repellent Potential of Eight Citrus Cultivars and Their Chemical Composition" Horticulturae 11, no. 1: 9. https://doi.org/10.3390/horticulturae11010009
APA StyleNawaz, M., Ullah, B., Abbas, M. G., Binyameen, M., Apšegaitė, V., Mozūraitis, R., & Azeem, M. (2025). Antibacterial and Mosquito Repellent Potential of Eight Citrus Cultivars and Their Chemical Composition. Horticulturae, 11(1), 9. https://doi.org/10.3390/horticulturae11010009