High Resolution Precipitation and Soil Moisture Data Integration for Landslide Susceptibility Mapping
Abstract
:1. Introduction
2. Study Area
2.1. Geological and Geomorphological Setting
2.2. Climatic Features
3. Materials
3.1. Static Conditioning Factors
3.2. Dynamic Conditioning Factors
4. Method
4.1. Random Forest Algorithm
- True positive (TP): a landslide is correctly predicted where one occurred;
- False positive (FP): a landslide is incorrectly predicted when none occurred;
- True negative (TN): no landslide is correctly predicted when none occurred;
- False negative (FN): no landslide is incorrectly predicted when one occurred.
- Accuracy measures the proportion of all correct predictions (both TP and TN) over the total predictions, reflecting the model’s overall performance. A high accuracy score, as shown in Figure 6D, indicates that the model is effective in identifying both landslide and non-landslide instances.
- Recall (also known as sensitivity or true positive rate) is the proportion of actual landslides that are correctly predicted, defined as TP/(TP + FN). High recall suggests that landslide events are effectively captured by the model, reducing missed occurrences.
- Precision represents the proportion of correctly predicted landslides among all positive predictions (TP/(TP + FP)). High precision, as shown in the model’s results, indicates that most landslides predicted by the model are accurate, reducing false positives.
- AUC (area under the receiver operating characteristic (ROC) curve) reflects the model’s ability to distinguish between landslide and non-landslide instances. An AUC close to 1 suggests high discriminative power, meaning the model effectively separates landslide-prone areas from stable regions.
4.2. Feature Impact Analysis
5. Prediction of Landslide Susceptibility in the Case Study and Discussion of the Results
5.1. Rainfall Events
5.2. Modeling Results
5.3. Reliability Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ardizzone, F.; Gariano, S.L.; Volpe, E.; Antronico, L.; Coscarelli, R.; Manunta, M.; Mondini, A.C. A Procedure for the Quantitative Comparison of Rainfall and DInSAR-Based Surface Displacement Time Series in Slow-Moving Landslides: A Case Study in Southern Italy. Remote Sens. 2023, 15, 320. [Google Scholar] [CrossRef]
- Volpe, E.; Gariano, S.L.; Ciabatta, L.; Peiro, Y.; Cattoni, E. Expected Changes in Rainfall-Induced Landslide Activity in an Italian Archaeological Area. Geosciences 2023, 13, 270. [Google Scholar] [CrossRef]
- Salciarini, D.; Brocca, L.; Camici, S.; Ciabatta, L.; Volpe, E.; Massini, R.; Tamagnini, C. Physically based approach for rainfall-induced landslide projections in a changing climate. Proc. Inst. Civ. Eng.-Geotech. Eng. 2019, 172, 481–495. [Google Scholar] [CrossRef]
- Volpe, E.; Ciabatta, L.; Salciarini, D.; Camici, S.; Cattoni, E.; Brocca, L. The Impact of Probability Density Functions Assessment on Model Performance for Slope Stability Analysis. Geosciences 2021, 11, 322. [Google Scholar] [CrossRef]
- Mwakapesa, D.S.; Lan, X.; Mao, Y. Landslide susceptibility assessment using deep learning considering unbalanced samples distribution. Heliyon 2024, 10, e30107. [Google Scholar] [CrossRef]
- Duan, G.; Zhang, J.; Zhang, S. Assessment of Landslide Susceptibility Based on Multiresolution Image Segmentation and Geological Factor Ratings. Int. J. Environ. Res. Public Health 2020, 17, 7863. [Google Scholar] [CrossRef]
- Gao, J.; Shi, X.; Li, L.; Zhou, Z.; Wang, J. Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China. Sustainability 2022, 14, 16716. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.; Chai, H.; Hou, E.; Li, X.; Ding, X. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environ. Earth Sci. 2016, 75, 63. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Bui, D.T.; Merghadi, A.; Sahana, M.; Zhu, Z.; Chen, C.-W.; Khosravi, K.; Yang, Y.; Pham, B.T. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci. Total Environ. 2019, 662, 332–346. [Google Scholar] [CrossRef]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Aleotti, P.; Chowdhury, R. Landslide hazard assessment: Summary review and new perspectives. Bull. Eng. Geol. Env. 1999, 58, 21–44. [Google Scholar] [CrossRef]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Carrara, A. Multivariate models for landslide hazard evaluation. Math. Geol. 1983, 15, 403–426. [Google Scholar] [CrossRef]
- Salciarini, D.; Morbidelli, R.; Cattoni, E.; Volpe, E. Physical and numerical modelling of the response of slopes under different rainfalls, inclinations and vegetation conditions. Riv. Ital. Di Geotec. 2022, 1229, 47–61. [Google Scholar] [CrossRef]
- Salciarini, D.; Volpe, E.; Cattoni, E. Probabilistic vs. Deterministic Approach in Landslide Triggering Prediction at Large–Scale. In Geotechnical Research for Land Protection and Development; Calvetti, F., Cotecchia, F., Galli, A., Jommi, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 62–70. [Google Scholar] [CrossRef]
- Salciarini, D.; Lupattelli, A.; Cecinato, F.; Cattoni, E.; Volpe, E. Static and seismic numerical analysis of a shallow landslide located in a vulnerable area. RIG-2022-2-2 2022, 1236, 5–23. [Google Scholar] [CrossRef]
- Johari, A.; Peiro, Y. Determination of stochastic shear strength parameters of a real landslide by back analysis. Int. J. Reliab. Risk Safety Theory Appl. 2021, 4, 7–16. [Google Scholar] [CrossRef]
- Charrière, M.; Humair, F.; Froese, C.; Jaboyedoff, M.; Pedrazzini, A.; Longchamp, C. From the source area to the deposit: Collapse, fragmentation, and propagation of the Frank Slide. Geol. Soc. Am. Bull. 2015, 128, B31243.1. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [Google Scholar] [CrossRef]
- Youssef, A.M.; El-Haddad, B.A.; Skilodimou, H.D.; Bathrellos, G.D.; Golkar, F.; Pourghasemi, H.R. Landslide susceptibility, ensemble machine learning, and accuracy methods in the southern Sinai Peninsula, Egypt: Assessment and Mapping. Nat. Hazards 2024, 1–32. [Google Scholar] [CrossRef]
- Sharma, N.; Saharia, M.; Ramana, G.V. High resolution landslide susceptibility mapping using ensemble machine learning and geospatial big data. CATENA 2024, 235, 107653. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Yao, J.; Qin, S.; Qiao, S.; Che, W.; Chen, Y.; Su, G.; Miao, Q. Assessment of Landslide Susceptibility Combining Deep Learning with Semi-Supervised Learning in Jiaohe County, Jilin Province, China. Appl. Sci. 2020, 10, 5640. [Google Scholar] [CrossRef]
- Tiwari, A.; Shirzaei, M. A novel machine learning and deep learning semi-supervised approach for automatic detection of InSAR-based deformation hotspots. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103611. [Google Scholar] [CrossRef]
- Bui, D.T.; Shirzadi, A.; Shahabi, H.; Geertsema, M.; Omidvar, E.; Clague, J.; Pham, B.T.; Dou, J.; Asl, D.T.; Ahmad, B.B.; et al. New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests 2019, 10, 743. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Dou, J.; Singh, S.K.; Trinh, P.T.; Tran, H.T.; Le, T.M.; Van Phong, T.; Khoi, D.K.; Shirzadi, A.; et al. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int. 2020, 35, 1267–1292. [Google Scholar] [CrossRef]
- Wang, C.; Jia, H.; Zhang, S.; Ma, Z.; Wang, X. A dynamic evaluation method for slope safety with monitoring information based on a hybrid intelligence algorithm. Comput. Geotech. 2023, 164, 105772. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, Z.; Chen, W.; Ma, J.; Liu, F.; Zhang, Y.; Ren, Z. Comparative study on landslide susceptibility mapping based on different ratios of training samples and testing samples by using RF and FR-RF models. Nat. Hazards Res. 2024, 4, 62–74. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xie, X.; Wang, J.; Pradhan, B.; Hong, H.; Bui, D.T.; Duan, Z.; Ma, J. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA 2017, 151, 147–160. [Google Scholar] [CrossRef]
- Vorpahl, P.; Elsenbeer, H.; Märker, M.; Schröder, B. How can statistical models help to determine driving factors of landslides? Ecol. Model. 2012, 239, 27–39. [Google Scholar] [CrossRef]
- Brenning, A. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [Google Scholar] [CrossRef]
- Quevedo, R.P.; Velastegui-Montoya, A.; Montalván-Burbano, N.; Morante-Carballo, F.; Korup, O.; Rennó, C.D. Land use and land cover as a conditioning factor in landslide susceptibility: A literature review. Landslides 2023, 20, 967–982. [Google Scholar] [CrossRef]
- Lima, P.; Steger, S.; Glade, T.; Murillo-García, F.G. Literature review and bibliometric analysis on data-driven assessment of landslide susceptibility. J. Mt. Sci. 2022, 19, 1670–1698. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Zhang, J.; Sun, D.; Zhou, X.; Mi, C.; Wen, H. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Di Napoli, M.; Tanyas, H.; Castro-Camilo, D.; Calcaterra, D.; Cevasco, A.; Di Martire, D.; Pepe, G.; Brandolini, P.; Lombardo, L. On the estimation of landslide intensity, hazard and density via data-driven models. Nat. Hazards 2023, 119, 1513–1530. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, H.; Dahal, A.; Cheng, W.; Zhao, M.; Lombardo, L. On the use of explainable AI for susceptibility modeling: Examining the spatial pattern of SHAP values. Geosci. Front. 2024, 15, 101800. [Google Scholar] [CrossRef]
- Steger, S.; Moreno, M.; Crespi, A.; Gariano, S.L.; Brunetti, M.T.; Melillo, M.; Peruccacci, S.; Marra, F.; De Vugt, L.; Zieher, T.; et al. Adopting the margin of stability for space–time landslide prediction—A data-driven approach for generating spatial dynamic thresholds. Geosci. Front. 2024, 15, 101822. [Google Scholar] [CrossRef]
- Magliulo, P.; Di Lisio, A.; Russo, F. Comparison of GIS-based methodologies for the landslide susceptibility assessment. Geoinformatica 2009, 13, 253–265. [Google Scholar] [CrossRef]
- Shano, L.; Raghuvanshi, T.K.; Meten, M. Landslide susceptibility evaluation and hazard zonation techniques—A review. Geoenviron Disasters 2020, 7, 18. [Google Scholar] [CrossRef]
- Nocentini, N.; Rosi, A.; Segoni, S.; Fanti, R. Towards landslide space-time forecasting through machine learning: The influence of rainfall parameters and model setting. Front. Earth Sci. 2023, 11, 1152130. [Google Scholar] [CrossRef]
- Dahal, A.; Tanyas, H.; Van Westen, C.; Van Der Meijde, M.; Mai, P.M.; Huser, R.; Lombardo, L. Space–time landslide hazard modeling via Ensemble Neural Networks. Nat. Hazards Earth Syst. Sci. 2024, 24, 823–845. [Google Scholar] [CrossRef]
- Lee, J.-J.; Song, M.-S.; Yun, H.-S.; Yum, S.-G. Dynamic landslide susceptibility analysis that combines rainfall period, accumulated rainfall, and geospatial information. Sci. Rep. 2022, 12, 18429. [Google Scholar] [CrossRef]
- Ahmed, M.; Tanyas, H.; Huser, R.; Dahal, A.; Titti, G.; Borgatti, L.; Francioni, M.; Lombardo, L. Dynamic rainfall-induced landslide susceptibility: A step towards a unified forecasting system. Int. J. Appl. Earth Obs. Geoinf. 2023, 125. [Google Scholar] [CrossRef]
- Halter, T.; Lehmann, P.; Wicki, A.; Aaron, J.; Stähli, M. Optimising landslide initiation modelling with high-resolution saturation prediction based on soil moisture monitoring data. Landslides 2024. [Google Scholar] [CrossRef]
- Marino, P.; Peres, D.J.; Cancelliere, A.; Greco, R.; Bogaard, T.A. Soil moisture information can improve shallow landslide forecasting using the hydrometeorological threshold approach. Landslides 2020, 17, 2041–2054. [Google Scholar] [CrossRef]
- Schilirò, L.; Marmoni, G.M.; Fiorucci, M.; Pecci, M.; Mugnozza, G.S. Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas. Nat. Hazards 2023, 118, 1401–1426. [Google Scholar] [CrossRef]
- Peiro, Y.; Ciabatta, L.; Volpe, E.; Cattoni, E. Spatiotemporal Modelling of Landslide Susceptibility Using Satellite Rainfall and Soil Moisture Products through Machine Learning Techniques. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar] [CrossRef]
- Sun, Y.; Wendi, D.; Kim, D.E.; Liong, S.-Y. Deriving intensity–duration–frequency (IDF) curves using downscaled in situ rainfall assimilated with remote sensing data. Geosci. Lett. 2019, 6, 17. [Google Scholar] [CrossRef]
- Basumatary, V.; Sil, B. Generation of Rainfall Intensity-Duration-Frequency curves for the Barak River Basin. Meteorol. Hydrol. Water Manag. 2017, 6, 47–57. [Google Scholar] [CrossRef]
- Mondini, A.C.; Guzzetti, F.; Melillo, M. Deep learning forecast of rainfall-induced shallow landslides. Nat. Commun. 2023, 14, 2466. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.C.; Cohn, A.; Lopes, A.V.; Thompson, S.E. Addressing rainfall data selection uncertainty using connections between rainfall and streamflow. Sci. Rep. 2017, 7, 219. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Melillo, M.; Gariano, S.L.; Ciabatta, L.; Brocca, L.; Amarnath, G.; Peruccacci, S. Satellite rainfall products outperform ground observations for landslide prediction in India. Hydrol. Earth Syst. Sci. 2021, 25, 3267–3279. [Google Scholar] [CrossRef]
- Pellarin, T.; Román-Cascón, C.; Baron, C.; Bindlish, R.; Brocca, L.; Camberlin, P.; Fernández-Prieto, D.; Kerr, Y.H.; Massari, C.; Panthou, G.; et al. The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison. Remote Sens. 2020, 12, 481. [Google Scholar] [CrossRef]
- Yang, H.; Hu, K.; Zhang, S.; Liu, S. Feasibility of satellite-based rainfall and soil moisture data in determining the triggering conditions of debris flow: The Jiangjia Gully (China) case study. Eng. Geol. 2023, 315, 107041. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.; Huffman, G. Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett. 2006, 33, 2006GL028010. [Google Scholar] [CrossRef]
- Bucci, F.; Santangelo, M.; Fongo, L.; Alvioli, M.; Cardinali, M.; Melelli, L.; Marchesini, I. A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling. Earth Syst. Sci. Data 2022, 14, 4129–4151. [Google Scholar] [CrossRef]
- Calvello, M.; Pecoraro, G. FraneItalia: A catalog of recent Italian landslides. Geoenviron. Disasters 2018, 5, 13. [Google Scholar] [CrossRef]
- Peruccacci, S.; Gariano, S.L.; Melillo, M.; Solimano, M.; Guzzetti, F.; Brunetti, M.T. The ITAlian rainfall-induced LandslIdes CAtalogue, an extensive and accurate spatio-temporal catalogue of rainfall-induced landslides in Italy. Earth Syst. Sci. Data 2023, 15, 2863–2877. [Google Scholar] [CrossRef]
- Po River Basin Authority. Caratteristiche del Bacino del Fiume Po e Primo Esame dell’ Impatto Ambientale Delle Attivitá Umane Sulle Risorse Idriche (Characteristics of Po River Catchment and First Investigation of the Impact of Human Activities on Water Resources), (n.d.); 2016. Available online: https://www.adbpo.it/PBI/PBI_progetto_piano/01_PBI_Po_Relazione_Generale_V06_10_2016.pdf (accessed on 1 November 2024).
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.L.; Cacciamani, C. Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521–522, 346–358. [Google Scholar] [CrossRef]
- Achour, Y.; Pourghasemi, H.R. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci. Front. 2020, 11, 871–883. [Google Scholar] [CrossRef]
- Setargie, T.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Fenta, A.A.; Berihun, M.L.; Sultan, D.; Yibeltal, M.; Ebabu, K.; Nzioki, B.; et al. Random Forest–based gully erosion susceptibility assessment across different agro-ecologies of the Upper Blue Nile basin, Ethiopia. Geomorphology 2023, 431, 108671. [Google Scholar] [CrossRef]
- Bourenane, H.; Bouhadad, Y.; Guettouche, M.S.; Braham, M. GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull. Eng. Geol. Environ. 2015, 74, 337–355. [Google Scholar] [CrossRef]
- Cantarino, I.; Carrion, M.A.; Goerlich, F.; Ibañez, V.M. A ROC analysis-based classification method for landslide susceptibility maps. Landslides 2019, 16, 265–282. [Google Scholar] [CrossRef]
- QGis, (n.d.). Available online: https://www.qgis.org (accessed on 10 April 2024).
- Lehner, B.; Verdin, K.; Jarvis, A. HydroSHEDS Technical Documentation, Version 1.2; World Wildlife Fund US: Washington, DC, USA, 2008. [Google Scholar]
- CIESIN: Center for International Earth Science Information Network (CIESIN), Columbia University. High-Resolution Settlement Layer (HRSL), 10-meter Resolution. NASA Socioeconomic Data and Applications Center (SEDAC). 2021. Available online: https://sedac.ciesin.columbia.edu/data/collection/hrsl[EC1] (accessed on 8 July 2024).
- Volpe, E.; Gariano, S.L.; Ardizzone, F.; Fiorucci, F.; Salciarini, D. A Heuristic Method to Evaluate the Effect of Soil Tillage on Slope Stability: A Pilot Case in Central Italy. Land 2022, 11, 912. [Google Scholar] [CrossRef]
- Salciarini, D.; Volpe, E.; Di Pietro, L.; Cattoni, E. A Case-Study of Sustainable Countermeasures against Shallow Landslides in Central Italy. Geosciences 2020, 10, 130. [Google Scholar] [CrossRef]
- Ponziani, F.; Pandolfo, C.; Stelluti, M.; Berni, N.; Brocca, L.; Moramarco, T. Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region (central Italy). Landslides 2012, 9, 229–237. [Google Scholar] [CrossRef]
- Wicki, A.; Jansson, P.-E.; Lehmann, P.; Hauck, C.; Stähli, M. Simulated or measured soil moisture: Which one is adding more value to regional landslide early warning? Hydrol. Earth Syst. Sci. 2021, 25, 4585–4610. [Google Scholar] [CrossRef]
- Felsberg, A.; De Lannoy, G.J.M.; Girotto, M.; Poesen, J.; Reichle, R.H.; Stanley, T. Global Soil Water Estimates as Landslide Predictor: The Effectiveness of SMOS, SMAP, and GRACE Observations, Land Surface Simulations, and Data Assimilation. J. Hydrometeorol. 2021, 22, 1065–1084. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J.; et al. Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG). In Satellite Precipitation Measurement; Levizzani, V., Kidd, C., Kirschbaum, D.B., Kummerow, C.D., Nakamura, K., Turk, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 343–353. [Google Scholar] [CrossRef]
- Xie, P.; Chen, M.; Yang, S.; Yatagai, A.; Hayasaka, T.; Fukushima, Y.; Liu, C. A Gauge-Based Analysis of Daily Precipitation over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Moramarco, T.; Hahn, S.; Hasenauer, S.; Kidd, R.; Dorigo, W.; Wagner, W.; Levizzani, V. Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data. JGR Atmos. 2014, 119, 5128–5141. [Google Scholar] [CrossRef]
- Stoffelen, A. Toward the true near-surface wind speed: Error modeling and calibration using triple collocation. J. Geophys. Res. 1998, 103, 7755–7766. [Google Scholar] [CrossRef]
- Karger, D.N.; Lange, S.; Hari, C.; Reyer, C.P.O.; Conrad, O.; Zimmermann, N.E.; Frieler, K. CHELSA-W5E5: Daily 1 km meteorological forcing data for climate impact studies. Earth Syst. Sci. Data 2023, 15, 2445–2464. [Google Scholar] [CrossRef]
- Filippucci, P. High-Resolution Remote Sensing for Rainfall and River Discharge Estimation. Ph.D. Thesis, Florence University—UNIFI, Firenze, Italy, Technischen Universität Wien—TUWIEN, Vienna, Austria, 2022. [Google Scholar]
- Gholami, H.; Mohammadifar, A. Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: A global source. Sci. Rep. 2022, 12, 19342. [Google Scholar] [CrossRef]
- Corder, G.W.; Foreman, D.I. Nonparametric Statistics: A Step-by-Step Approach; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Garg, A.; Tai, K. Comparison of statistical and machine learning methods in modelling of data with multicollinearity. Int. J. Model. Identif. Control 2013, 18, 295. [Google Scholar] [CrossRef]
- Bogaard, T.; Greco, R. Invited perspectives: Hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: Proposing hydro-meteorological thresholds. Nat. Hazards Earth Syst. Sci. 2018, 18, 31–39. [Google Scholar] [CrossRef]
- Greco, R.; Marino, P.; Bogaard, T.A. Recent advancements of landslide hydrology. WIREs Water 2023, 10, e1675. [Google Scholar] [CrossRef]
- Moreno, M.; Lombardo, L.; Crespi, A.; Zellner, P.J.; Mair, V.; Pittore, M.; Van Westen, C.; Steger, S. Space-time data-driven modeling of precipitation-induced shallow landslides in South Tyrol, Italy. Sci. Total Environ. 2024, 912, 169166. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.G.; Neverman, A.J.; Betts, H.; Spiekermann, R. The influence of spatial patterns in rainfall on shallow landslides. Geomorphology 2023, 437, 108795. [Google Scholar] [CrossRef]
Factor | Description | Source, Scale/Resolution |
---|---|---|
Elevation | Digital elevation of the terrain surface | DTM, 10 m |
Slope angle | Angle of the slope inclination | DTM, 10 m |
Aspect | Compass direction of the slope exposure | DTM, 10 m |
Plan curvature | Curvature perpendicular to the slope, indicating concave or convex surface | DTM, 10 m |
Profile curvature | Curvature parallel to the slope, indicating concave or convex surfaces | DTM, 10 m |
Geology | Lithology of the surface material | Geo-Map 1:100,000 |
Land cover | physical material on the surface of the Earth | CORINE Land Cover (CLC), 100 m |
NVDI | An index to quantify the growth of green vegetation on land cover | Sentinel-2, 10 m |
Distance to river | Distance to river | HyrdoSHED(SRTM),10 m |
Distance to road | Distance to road | CIESIN,10 m |
Soil moisture | Amount of soil water content | GLEAM 4DMED, 1 km |
1 day rain | Amount of cumulative 1 d antecedent rainfall | 4DMED, 1 km |
7 day Rain | Amount of cumulative 7 d antecedent rainfall | 4DMED, 1 km |
15 day Rain | Amount of cumulative 15 d antecedent rainfall | 4DMED, 1 km |
Product | Spatial Resolution | Temporal Resolution | Temporal Coverage | Source |
---|---|---|---|---|
IMERG-LR | 0.1° | 0.5 h | 2002–to date | NASA |
CPC | 0.5° | Daily | 1981–to date | NOAA |
SM2RAIN | 1 km | Daily | 2017–2022 | TUWIEN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peiro, Y.; Volpe, E.; Ciabatta, L.; Cattoni, E. High Resolution Precipitation and Soil Moisture Data Integration for Landslide Susceptibility Mapping. Geosciences 2024, 14, 330. https://doi.org/10.3390/geosciences14120330
Peiro Y, Volpe E, Ciabatta L, Cattoni E. High Resolution Precipitation and Soil Moisture Data Integration for Landslide Susceptibility Mapping. Geosciences. 2024; 14(12):330. https://doi.org/10.3390/geosciences14120330
Chicago/Turabian StylePeiro, Yaser, Evelina Volpe, Luca Ciabatta, and Elisabetta Cattoni. 2024. "High Resolution Precipitation and Soil Moisture Data Integration for Landslide Susceptibility Mapping" Geosciences 14, no. 12: 330. https://doi.org/10.3390/geosciences14120330
APA StylePeiro, Y., Volpe, E., Ciabatta, L., & Cattoni, E. (2024). High Resolution Precipitation and Soil Moisture Data Integration for Landslide Susceptibility Mapping. Geosciences, 14(12), 330. https://doi.org/10.3390/geosciences14120330