Classification Ensembles for Beach Cast and Drifting Vegetation Mapping with Sentinel-2 and PlanetScope
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- Submerged seagrass beds on the sandy substrate offshore, dominated by Zostera marina.
- Brown algae agglomerations on the groynes, dominated by Fucus vesiculosus.
- Drifting patches of detached seagrass fragments and various macroalgae at and close to the shoreline such as: Ceramium secundatum, Ceramium tenuicorne, Vertebrata fucoides, Cladophora glomerata, Ulva sp., Phycodrys rubens.
- Beach cast over the sandy beach consisting of Zostera marina and the macroalgae of the drift compositions. Due to the faster decomposition of macroalgae, older deposits are dominated by fractions of seagrass.
2.2. Field Mapping
2.3. Satellite Data
2.3.1. Sentinel-2 MSI
2.3.2. PlanetScope
2.4. Advanced Shoreline Masking
2.5. Classifier Ensemble
- (1)
- Random Forest Classifier (RF)*: This ensemble learning decision tree method was run with 100 trees and the number of variables per split (i.e., number of features at each node) was automatically selected as the square root of the number of input variables (bands plus index).
- (2)
- (3)
- Minimum Distance (MD): This statistic-based classifier classifies pixels to the class with the smallest distance in a (multi) dimensional space. Using the Mahalanobis distance as distance measure which adds a degree of direction sensitivity via the covariance matrix to the method [54].
- (4)
- (5)
- (6)
- Stochastic Gradient Boosting (SGB)*: This decision tree-based method uses bagging and boosting to improve the quality of fit to each base learner [58,59]. The number of trees was set to 100 as an optimal balance between computation time and classification accuracy. A learning rate of <0.1 yields improvements to the generalization ability of the model. We found that a learning rate of 0.005 was optimal to achieve a relatively low root mean square error (RMSE). This finding supports the statement of Godinho et al. [60], who suggested this value for tree canopy cover percentage estimation with S-2A. To prevent from over-fitting, the subsampling rate was set to 0.6.
2.6. Training and Validation of the Classifiers
- (1)
- Seagrass: This class includes sessile seagrass occurrences at the seafloor. Most of these patches are located below 1 m water depth and were not mapped during the field campaigns. Therefore, this class was primarily trained by incorporating orthophotos from Google and S-2 false color images, as the location and extend of these patches change slowly.
- (2)
- Water covered sand: The sand covered underwater areas were not directly mapped; however, it appears from the vegetation mappings that unmapped areas mostly represent sand-dominated areas without vegetation. When setting the training areas, we included true and false color imagery, as well as reflectance spectra from PS and S-2.
- (3)
- Dune vegetation: The sessile dune vegetation is particularly important as a stand-alone class, since in the absence of this class these areas would be falsely classified as beach cast. Training and validation data for this class could be extracted by visually inspecting PS CIR imagery in combination with orthophotos.
- (4)
- Deep water: Training and validation data for this class could be obtained by including bathymetry maps (JRC Global Surface Water Mapping Layers, v1.2) and using only water pixels deeper than 25 m for the training of this class.
- (5)
- Beach sand: This class includes fine sandy beach without the influence of vegetation. Like with the water covered sand class, the training and validation data of this class resulted from the areas between the mapped terrestrial polygons with beach cast.
- (6)
- Beach cast: This class combines all types of beach cast. We did not consider age, degree of decomposition and species composition while creating the training—and validation data. Specifically for this class, the reference patches mapped during the field campaign did not capture enough pixels to ensure a successful training of the classifiers. Therefore, we performed a CIR analysis of the PS data based on the field mapping to generate additional training data.
- (7)
- Drifting vegetation: In this class we recorded all types of drifting macroalgae, which may also include smaller fractions of detached seagrass. For the creation of the training data, we used the results from the field mapping. We analyzed the spectra within the mapped areas and added similar pixels to the selection using the PS CIR images.
3. Results and Discussion
3.1. Advanced Shoreline Masking
3.2. Training and Validation
3.3. Selection of Thematic Classes
3.4. Band Selection
3.5. Classification Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuarine, Coastal. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- McLachlan, A.; Brown, A.C. The Ecology of Sandy Shores, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 978-0-12-372569-1. [Google Scholar]
- Crawley, K.R.; Hyndes, G.A.; Vanderklift, M.A.; Revill, A.T.; Nichols, P.D. Allochthonous brown algae are the primary food source for consumers in a temperate, coastal environment. Mar. Ecol. Prog. Ser. 2009, 376, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Corbí, H.; Riquelme, A.; Megías-Baños, C.; Abellan, A. 3-D Morphological Change Analysis of a Beach with Seagrass Berm Using a Terrestrial Laser Scanner. IJGI 2018, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Malm, T.; Råberg, S.; Fell, S.; Carlsson, P. Effects of beach cast cleaning on beach quality, microbial food web, and littoral macrofaunal biodiversity. Estuarine, Coastal. Shelf Sci. 2004, 60, 339–347. [Google Scholar] [CrossRef]
- Alber, M.; Valiela, I. Incorporation of organic aggregates by marine mussels. Mar. Biol. 1994, 121, 259–265. [Google Scholar] [CrossRef]
- Hansson, S.; Larsson, U.; Johansson, S. Selective predation by herring and mysids, and zooplankton community structure in a Baltic Sea coastal area. J. Plankton. Res. 1990, 12, 1099–1116. [Google Scholar] [CrossRef]
- van der Merwe, D.; McLachlan, A. Significance of free-floating macrophytes in the ecology of a sandy beach surf zone. Mar. Ecol. Prog. Ser. 1987, 38, 53–63. [Google Scholar] [CrossRef]
- Lenanton, R.C.; Robertson, A.I.; Hansen, J.A. Nearshore Accumulations of Detached Macrophytes as Nursery Areas for Fish. Mar. Ecol. Prog. Ser. 1982, 9, 51–57. [Google Scholar] [CrossRef]
- Orr, K.K.; Wilding, T.A.; Horstmeyer, L.; Weigl, S.; Heymans, J.J. Detached macroalgae: Its importance to inshore sandy beach fauna. Estuarine, Coastal. Shelf Sci. 2014, 150, 125–135. [Google Scholar] [CrossRef]
- Suursaar, Ü.; Torn, K.; Martin, G.; Herkül, K.; Kullas, T. Formation and species composition of stormcast beach wrack in the Gulf of Riga, Baltic Sea **The study was supported by the EU Life+project MARMONI ‘Innovative approaches for marine biodiversity monitoring and assessment of conservation status of nature values in the Baltic Sea’, ESF grant No. 8980, Estonian target financed project SF0180104s08 and Institutional research funding IUT2-20 of the Estonian Research Council. Oceanologia 2014, 56, 673–695. [Google Scholar] [CrossRef]
- Olmedo-Masat, O.M.; Raffo, M.P.; Rodríguez-Pérez, D.; Arijón, M.; Sánchez-Carnero, N. How Far Can We Classify Macroalgae Remotely? An Example Using a New Spectral Library of Species from the South West Atlantic (Argentine Patagonia). Remote Sens. 2020, 12, 3870. [Google Scholar] [CrossRef]
- Veettil, B.K.; Ward, R.D.; Lima, M.D.A.C.; Stankovic, M.; Hoai, P.N.; Quang, N.X. Opportunities for seagrass research derived from remote sensing: A review of current methods. Ecol. Indic. 2020, 117, 106560. [Google Scholar] [CrossRef]
- Karki, S.; Bermejo, R.; Wilkes, R.; Monagail, M.M.; Daly, E.; Healy, M.; Hanafin, J.; McKinstry, A.; Mellander, P.-E.; Fenton, O.; et al. Mapping Spatial Distribution and Biomass of Intertidal Ulva Blooms Using Machine Learning and Earth Observation. Front. Mar. Sci. 2021, 8, 380. [Google Scholar] [CrossRef]
- Tamondong, A.M.; Cruz, C.A.; Guihawan, J.; Garcia, M.; Quides, R.R.; Cruz, J.A.; Blanco, A.C. Remote sensing-based estimation of seagrass percent cover and LAI for above ground carbon sequestration mapping. In Proceedings of the Remote Sensing of the Open and Coastal Ocean and Inland Waters. Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 26 September 2018; Frouin, R.J., Murakami, H., Eds.; SPIE: Bellingham, DC, USA, 2018; p. 2, ISBN 9781510621312. [Google Scholar]
- Murray, N.J.; Keith, D.A.; Bland, L.M.; Ferrari, R.; Lyons, M.B.; Lucas, R.; Pettorelli, N.; Nicholson, E. The role of satellite remote sensing in structured ecosystem risk assessments. Sci. Total Environ. 2018, 619–620, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traganos, D.; Cerra, D.; Reinartz, P. Cubesat-derived detection of seagrasses using planet imagery following unmixing-based denoising: Is small the next big? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-1/W1, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Wicaksono, P.; Lazuardi, W. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar] [CrossRef]
- Hang, N.T.T.; Hoa, N.T.; van Tu, N.; Lam, N.N. Spatial distribution of submerged aquatic vegetation in an Chan coastal waters, Phu Yen province using the PlanetScope satellite image. Vietnam. J. EARTH Sci. 2019, 41, 358–373. [Google Scholar] [CrossRef] [Green Version]
- Traganos, D.; Reinartz, P. Mapping Mediterranean seagrasses with Sentinel-2 imagery. Mar. Pollut. Bull. 2018, 134, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Fauzan, M.A.; Kumara, I.S.W.; Yogyantoro, R.N.; Suwardana, S.W.; Fadhilah, N.; Nurmalasari, I.; Apriyani, S.; Wicaksono, P. Assessing the Capability of Sentinel-2A Data for Mapping Seagrass Percent Cover in Jerowaru, East Lombok. IJG 2017, 49, 195. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.; Ghosh, S.K. Ensemble classifiers in remote sensing: A review. In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), IEEE, Greater Noida, India, 5–6 May 2017; pp. 1148–1152. [Google Scholar]
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A. Shoreline Detection using Optical Remote Sensing: A Review. IJGI 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Dolan, R.; Hayden, B.P.; May, P.; May, S. The reliability of shoreline change measurements from aerial photographs. Shore Beach 1980, 48, 22–29. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Wang, C. A multi-threshold based morphological approach for extracting coastal line feature in remote sensed images. In Proceedings of the Pecora 15/Land Satellite Information IV/ISPRS Commission I/FIEOS 2002 Conference Proceedings, Denver, CO, USA, 10–14 November 2002. [Google Scholar]
- Aedla, R.; Dwarakish, G.S.; Reddy, D.V. Automatic Shoreline Detection and Change Detection Analysis of Netravati-GurpurRivermouth Using Histogram Equalization and Adaptive Thresholding Techniques. Aquat. Procedia 2015, 4, 563–570. [Google Scholar] [CrossRef]
- Bamdadinejad, M.; Ketabdari, M.J.; Chavooshi, S.M.H. Shoreline Extraction Using Image Processing of Satellite Imageries. J. Indian Soc. Remote Sens. 2021, 49, 2365–2375. [Google Scholar] [CrossRef]
- Bayram, B.; Janpaule, I.; Oğurlu, M.; Bozkurt, S.; Reis, H.Ç.; Şeker, D.Z. Shoreline Extraction and Change Detection using 1:5000 Scale Orthophoto Maps: A Case Study of Latvia-Riga. Int. J. Environ. Geoinform. 2015, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Schwarzer, K. Exchange of beach sediment between beaches and bars after a beach nourishment. In Proceedings of the International Meeting “Coastal Protection, International Experiences and Prospect”, Nantes, France, 7–11 October 1991; pp. 126–133. [Google Scholar]
- Schwarzer, K.; Diesing, M. Sediment Redeposition in Nearshore Areas—Examples from the Baltic Sea. In Proceedings of the Coastal Dynamics’01. Fourth Conference on Coastal Dynamics, Lund, Sweden, 11–15 June 2001; Hanson, H., Larson, M., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2001; pp. 808–817, ISBN 978-0-7844-0566-6. [Google Scholar]
- Reese, S.; Markau, H.-J. Risk Handling & Natural Hazards: New Strategies in Coastal Defense—A Case Study from Schleswig-Holstein, Germany. In Proceedings of the Solutions to Coastal Disasters’02. Coastal Disasters Conference 2002, San Diego, CA, USA, 24–27 February 2002; Ewing, L., Wallendorf, L., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2002; pp. 498–510, ISBN 9780784406052. [Google Scholar]
- Garmin Ltd. GPSMAP® 64 SERIES/GPSMAP 64X SERIES Owner’s Manual; Garmin Ltd.: Lenexa, KS, USA, 2013. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 User Handbook: User Guide. Available online: https://sentinels.copernicus.eu/documents/247904/685211/Sentinel-2_User_Handbook.pdf/8869acdf-fd84-43ec-ae8c-3e80a436a16c?t=1438296087000 (accessed on 12 June 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII. Image and Signal Processing for Remote Sensing, Warsaw, Poland, 11–14 September 2017; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds.; SPIE: Bellingham, DC, USA, 2017; p. 3, ISBN 9781510613188. [Google Scholar]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, F.J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I Path Radiance Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [Green Version]
- Planet Labs Inc. Planet Surface Reflectance Product v2. Available online: https://assets.planet.com/marketing/PDF/Planet_Surface_Reflectance_Technical_White_Paper.pdf (accessed on 20 September 2021).
- Planet Labs Inc. PLANET IMAGERY PRODUCT SPECIFICATIONS. Available online: https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf (accessed on 20 September 2021).
- Du, Y.; Zhang, Y.; Ling, F.; Wang, Q.; Li, W.; Li, X. Water Bodies’ Mapping from Sentinel-2 Imagery with Modified Normalized Difference Water Index at 10-m Spatial Resolution Produced by Sharpening the SWIR Band. Remote Sens. 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Chavez, P.S., Jr.; Sides, S.C.; Anderson, J.A. Comparison of three different methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic. Photogramm. Eng. Remote Sens. 1991, 57, 295–303. [Google Scholar]
- Zhou, W.; Li, Z.; Ji, S.; Hua, C.; Fan, W. A New Index Model NDVI-MNDWI for Water Object Extraction in Hybrid Area. In Proceedings of the Geo-Informatics in Resource Management and Sustainable Ecosystem, Ypsilanti, MI, USA, 3–5 October 2014; Bian, F., Xie, Y., Eds.; Springer: Berlin, Germany, 2015; pp. 513–519, ISBN 978-3-662-45736-8. [Google Scholar]
- Briem, G.J.; Benediktsson, J.A.; Sveinsson, J.R. Multiple classifiers applied to multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2291–2299. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Du, P.; Xia, J.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple classifier system for remote sensing image classification: A review. Sensors (Basel) 2012, 12, 4764–4792. [Google Scholar] [CrossRef]
- Haifeng, L. Smile—Statistical Machine Intelligence and Learning Engine. 2014. Available online: https://haifengl.github.io. (accessed on 20 September 2021).
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017; ISBN 9781315139470. [Google Scholar]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction, 5th ed.; Springer: Berlin, Germany, 2013; ISBN 978-3-642-30062-2. [Google Scholar]
- Kang, J.; Zhang, H.; Yang, H.; Zhang, L. Support Vector Machine Classification of Crop Lands Using Sentinel-2 Imagery. In Proceedings of the 2018 7th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), IEEE, Hangzhou, China, 6–9 August 2018; pp. 1–6, ISBN 978-1-5386-5038-7. [Google Scholar]
- Saini, R.; Ghosh, S.K. Crop classification on single date sentinel-2 imagery using random forest and suppor vector machine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-5, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Haykin, S.S. Neural Networks and Learning Machines, 3rd ed.; Pearson: New York, NY, USA, 2009; ISBN 978-0-13-147139-9. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Godinho, S.; Guiomar, N.; Gil, A. Estimating tree canopy cover percentage in a mediterranean silvopastoral systems using Sentinel-2A imagery and the stochastic gradient boosting algorithm. Int. J. Remote Sens. 2018, 39, 4640–4662. [Google Scholar] [CrossRef]
- Campbell, J.B. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011; ISBN 9781462506750. [Google Scholar]
- Maxwell, A.E.; Warner, T.A. Thematic Classification Accuracy Assessment with Inherently Uncertain Boundaries: An Argument for Center-Weighted Accuracy Assessment Metrics. Remote Sens. 2020, 12, 1905. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Yasir, M.; Sheng, H.; Fan, H.; Nazir, S.; Niang, A.J.; Salauddin, M.; Khan, S. Automatic Coastline Extraction and Changes Analysis Using Remote Sensing and GIS Technology. IEEE Access 2020, 8, 180156–180170. [Google Scholar] [CrossRef]
- Gens, R. Remote sensing of coastlines: Detection, extraction and monitoring. Int. J. Remote Sens. 2010, 31, 1819–1836. [Google Scholar] [CrossRef]
- Dellepiane, S.; de Laurentiis, R.; Giordano, F. Coastline extraction from SAR images and a method for the evaluation of the coastline precision. Pattern Recognit. Lett. 2004, 25, 1461–1470. [Google Scholar] [CrossRef]
- Sun, D.; Chen, Y.; Wang, S.; Zhang, H.; Qiu, Z.; Mao, Z.; He, Y. Using Landsat 8 OLI data to differentiate Sargassum and Ulva prolifera blooms in the South Yellow Sea. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102302. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, Z.; Bilal, M.; Wang, S.; Sun, D.; Chen, Y. Automatic method to monitor floating macroalgae blooms based on multilayer perceptron: Case study of Yellow Sea using GOCI images. Opt. Express 2018, 26, 26810–26829. [Google Scholar] [CrossRef] [PubMed]
- Jorge, D.; Barbosa, C.; Affonso, A.; Lobo, F.; Novo, E. SNR (Signal-To-Noise Ratio) Impact on Water Constituent Retrieval from Simulated Images of Optically Complex Amazon Lakes. Remote Sens. 2017, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Nijland, W.; Reshitnyk, L.; Rubidge, E. Satellite remote sensing of canopy-forming kelp on a complex coastline: A novel procedure using the Landsat image archive. Remote Sens. Environ. 2019, 220, 41–50. [Google Scholar] [CrossRef]
Accuracy Measure | RF | CC | MD | SVM | NB | SGB |
---|---|---|---|---|---|---|
Overall accuracy | 0.97 | 0.96 | 0.80 | 0.91 | 0.86 | 0.96 |
F1 score beach cast | 0.83 | 0.78 | 0.54 | 0.70 | 0.51 | 0.68 |
F1 score drifting vegetation | 0.84 | 0.83 | 0.53 | 0.60 | 0.47 | 0.77 |
Combined F1 score | 0.84 | 0.80 | 0.54 | 0.65 | 0.49 | 0.73 |
Accuracy Measure | RF | CC | MD | SVM | NB | SGB |
---|---|---|---|---|---|---|
Overall accuracy | 0.96 | 0.94 | 0.71 | 0.90 | 0.95 | 0.95 |
F1 score beach cast | 0.72 | 0.71 | 0.41 | 0.70 | 0.39 | 0.63 |
F1 score drifting vegetation | 0.81 | 0.70 | 0.18 | 0.60 | 0.05 | 0.78 |
Combined F1 score | 0.76 | 0.71 | 0.30 | 0.65 | 0.22 | 0.71 |
Accuracy Measure | S-2 Cart Classifier | S-2 Ensemble | PS Random Forest | PS Ensemble |
---|---|---|---|---|
OA | 0.97 | 0.98 | 0.96 | 0.95 |
CF1 | 0.86 | 0.86 | 0.94 | 0.95 |
Classification/Ensemble | Beach Cast Area [ha] | Drifting Vegetation Area [ha] |
---|---|---|
Sentinel-2 CC | 4.96 | 26.04 |
Sentinel-2 Ensemble | 4.55 | 18.49 |
PlanetScope RF | 7.45 | 25.24 |
PlanetScope Ensemble | 6.83 | 24.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uhl, F.; Græsdal Rasmussen, T.; Oppelt, N. Classification Ensembles for Beach Cast and Drifting Vegetation Mapping with Sentinel-2 and PlanetScope. Geosciences 2022, 12, 15. https://doi.org/10.3390/geosciences12010015
Uhl F, Græsdal Rasmussen T, Oppelt N. Classification Ensembles for Beach Cast and Drifting Vegetation Mapping with Sentinel-2 and PlanetScope. Geosciences. 2022; 12(1):15. https://doi.org/10.3390/geosciences12010015
Chicago/Turabian StyleUhl, Florian, Trine Græsdal Rasmussen, and Natascha Oppelt. 2022. "Classification Ensembles for Beach Cast and Drifting Vegetation Mapping with Sentinel-2 and PlanetScope" Geosciences 12, no. 1: 15. https://doi.org/10.3390/geosciences12010015
APA StyleUhl, F., Græsdal Rasmussen, T., & Oppelt, N. (2022). Classification Ensembles for Beach Cast and Drifting Vegetation Mapping with Sentinel-2 and PlanetScope. Geosciences, 12(1), 15. https://doi.org/10.3390/geosciences12010015