Examining Deep Learning Pixel-Based Classification Algorithms for Mapping Weed Canopy Cover in Wheat Production Using Drone Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Growing of Winter Wheat
2.2.2. Drone Data Acquisition
2.2.3. Deep Learning Image (Pixel) Classification
2.2.4. Overview of Deep Learning Model Architectures
2.2.5. Assessment of the Models
- = true positive of class i
- = false positive of class i
- = overall accuracy
- = the count of true positives for class i
- = the sum of all true positives across all classes
- = the total number of instances in the matrix
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flessner, M.L.; Burke, I.C.; Dille, J.A.; Everman, W.J.; VanGessel, M.J.; Tidemann, B.; Manuchehri, M.R.; Soltani, N.; Sikkema, P.H. Potential wheat yield loss due to weeds in the United States and Canada. Weed Technol. 2021, 35, 916–923. [Google Scholar] [CrossRef]
- Santín-Montanyá, M.I.; Martín-Lammerding, D.; Walter, I.; Zambrana, E.; Tenorio, J.L. Effects of tillage, crop systems and fertilization on weed abundance and diversity in 4-year dry land winter wheat. Eur. J. Agron. 2013, 48, 43–49. [Google Scholar] [CrossRef]
- Hall, D.; Dayoub, F.; Kulk, J.; McCool, C. Towards unsupervised weed scouting for agricultural robotics. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5223–5230. [Google Scholar]
- Kalischuk, M.; Paret, M.L.; Freeman, J.H.; Raj, D.; Da Silva, S.; Eubanks, S.; Wiggins, D.; Lollar, M.; Marois, J.J.; Mellinger, H.C. An improved crop scouting technique incorporating unmanned aerial vehicle–assisted multispectral crop imaging into conventional scouting practice for gummy stem blight in watermelon. Plant Dis. 2019, 103, 1642–1650. [Google Scholar] [CrossRef] [PubMed]
- Mateen, A.; Zhu, Q. Weed Detection in Wheat Crop Using UAV for Precision Agriculture. Pak. J. Agric. Sci. 2017, 56, 775–784. [Google Scholar] [CrossRef]
- Mohd Noor, N.; Abdullah, A.; Hashim, M. Remote sensing UAV/drones and its applications for urban areas: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 169, 012003. [Google Scholar] [CrossRef]
- Pflanz, M.; Nordmeyer, H.; Schirrmann, M. Weed Mapping with UAS Imagery and a Bag of Visual Words Based Image Classifier. Remote Sens. 2018, 10, 1530. [Google Scholar] [CrossRef]
- Abiri, R.; Rizan, N.; Balasundram, S.K.; Shahbazi, A.B.; Abdul-Hamid, H. Application of digital technologies for ensuring agricultural productivity. Heliyon 2023, 9, e22601. [Google Scholar] [CrossRef]
- Gómez-Candón, D.; De Castro, A.I.; López-Granados, F. Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes in wheat. Precis. Agric. 2013, 15, 44–56. [Google Scholar] [CrossRef]
- Kenawy, E.-S.M.; Khodadadi, N.; Mirjalili, S.; Makarovskikh, T.; Abotaleb, M.; Karim, F.K.; Alkahtani, H.K.; Abdelhamid, A.A.; Eid, M.M.; Horiuchi, T. Metaheuristic optimization for improving weed detection in wheat images captured by drones. Mathematics 2022, 10, 4421. [Google Scholar] [CrossRef]
- Yang, C. Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example. Engineering 2020, 6, 528–532. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W. Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef]
- Tao, Y.; Xu, M.; Lu, Z.; Zhong, Y. DenseNet-Based Depth-Width Double Reinforced Deep Learning Neural Network for High-Resolution Remote Sensing Image Per-Pixel Classification. Remote Sens. 2018, 10, 779. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Kong, J.-L.; Jin, X.-B.; Wang, X.-Y.; Su, T.-L.; Zuo, M. CropDeep: The Crop Vision Dataset for Deep-Learning-Based Classification and Detection in Precision Agriculture. Sensors 2019, 19, 1058. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Hoang, T.D.; Pham, M.T.; Vu, T.T.; Nguyen, T.H.; Huynh, Q.-T.; Jo, J. Monitoring agriculture areas with satellite images and deep learning. Appl. Soft Comput. 2020, 95, 106565. [Google Scholar] [CrossRef]
- Busia, A.; Dahl, G.E.; Fannjiang, C.; Alexander, D.H.; Dorfman, E.; Poplin, R.; McLean, C.Y.; Chang, P.-C.; DePristo, M. A deep learning approach to pattern recognition for short DNA sequences. bioRxiv 2019. [Google Scholar] [CrossRef]
- de Camargo, T.; Schirrmann, M.; Landwehr, N.; Dammer, K.-H.; Pflanz, M. Optimized Deep Learning Model as a Basis for Fast UAV Mapping of Weed Species in Winter Wheat Crops. Remote Sens. 2021, 13, 1704. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification With Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Singh, M.; Tyagi, K.D. Pixel based classification for Landsat 8 OLI multispectral satellite images using deep learning neural network. Remote Sens. Appl. Soc. Environ. 2021, 24, 100645. [Google Scholar] [CrossRef]
- Akumu, C.E.; Oppong, J.N.; Dennis, S. Examining the Percent Canopy Cover and Health of Winter Wheat in No-Till and Conventional Tillage Plots Using a Drone. Agriculture 2024, 14, 760. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Diao, Z.; Guo, P.; Zhang, B.; Zhang, D.; Yan, J.; He, Z.; Zhao, S.; Zhao, C. Maize crop row recognition algorithm based on improved UNet network. Comput. Electron. Agric. 2023, 210, 107940. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Taparia, A. U-Net Architecture Explained. Available online: https://www.geeksforgeeks.org/u-net-architecture-explained/# (accessed on 11 June 2024).
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- ArcGIS Developers. How U-Net Works? For ESRI. Available online: https://developers.arcgis.com/python/guide/how-unet-works/ (accessed on 11 June 2024).
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar] [CrossRef]
- Liu, M.; Fu, B.; Xie, S.; He, H.; Lan, F.; Li, Y.; Lou, P.; Fan, D. Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm. Ecol. Indic. 2021, 125, 107562. [Google Scholar] [CrossRef]
- Quan, B.; Liu, B.; Fu, D.; Chen, H.; Liu, X. Improved Deeplabv3 For Better Road Segmentation In Remote Sensing Images. In Proceedings of the 2021 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Shanghai, China, 27–29 August 2021; pp. 331–334. [Google Scholar]
- ArcGIS Developers. How DeepLabV3 Works? For ESRI. Available online: https://developers.arcgis.com/python/guide/how-deeplabv3-works/ (accessed on 11 June 2024).
- Long, X.; Zhang, W.; Zhao, B. PSPNet-SLAM: A Semantic SLAM Detect Dynamic Object by Pyramid Scene Parsing Network. IEEE Access 2020, 8, 214685–214695. [Google Scholar] [CrossRef]
- ArcGIS Developers. How PSPNet Works? For ESRI. Available online: https://developers.arcgis.com/python/guide/how-pspnet-works/ (accessed on 11 June 2024).
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Y.; Song, M.; Ding, Y.; Lin, F.; Liang, D.; Zhang, D. Use of unmanned aerial vehicle imagery and deep learning unet to extract rice lodging. Sensors 2019, 19, 3859. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Song, Y.; Lee, W.-K. Accuracy analysis of multi-series phenological landcover classification using U-Net-based deep learning model-Focusing on the Seoul, Republic of Korea. Korean J. Remote Sens. 2021, 37, 409–418. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, X.; Li, M.; Liu, J.; Wang, Z. Oral Microbe Community and Pyramid Scene Parsing Network-based Periodontitis Risk Prediction. Int. Dent. J. 2024. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Song, Y.; Su, J.; Fang, Y.; Shen, L.; Mi, Z.; Su, B. Segmentation of field grape bunches via an improved pyramid scene parsing network. Int. J. Agric. Biol. Eng. 2021, 14, 185–194. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Feng, L.; Li, S.; Yang, W.; Guo, D. A Refined Pyramid Scene Parsing Network for Polarimetric SAR Image Semantic Segmentation in Agricultural Areas. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Fu, Y.; Fan, J.; Xing, S.; Wang, Z.; Jing, F.; Tan, M. Image segmentation of cabin assembly scene based on improved RGB-D mask R-CNN. IEEE Trans. Instrum. Meas. 2022, 71, 1–12. [Google Scholar] [CrossRef]
- Naik, K.J. Deep Learning Based Segmentation of Weed Images in crop fields using U-Net. In Proceedings of the 2024 3rd International Conference for Advancement in Technology (ICONAT), Goa, India, 6–8 September 2024; pp. 1–6. [Google Scholar]
- Zou, K.; Chen, X.; Zhang, F.; Zhou, H.; Zhang, C. A field weed density evaluation method based on uav imaging and modified u-net. Remote Sens. 2021, 13, 310. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, X.; Cui, J.; Lu, Y. Application of Pyramid Scene Parsing Network in leaf segmentation for Wheat Stripe Rust. In Proceedings of the 2024 5th International Conference on Computer Vision, Image and Deep Learning (CVIDL), Zhuhai, China, 19–21 April 2024; pp. 926–930. [Google Scholar]
- Zhang, K.; Li, L.; Liu, H.; Yuan, J.; Tai, X.-C. Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation. arXiv 2024, arXiv:2406.19400. [Google Scholar] [CrossRef]
- Veeragandham, S.; Santhi, H. Optimization enabled Deep Quantum Neural Network for weed classification and density estimation. Expert Syst. Appl. 2024, 243, 122679. [Google Scholar] [CrossRef]
U-Net—Jointing | ||||
---|---|---|---|---|
Reference/class | Mayweed | Speedwell | Others | Wheat |
Mayweed | 65 | 24 | 10 | 1 |
Speedwell | 1 | 92 | 5 | 1 |
Others | 0 | 8 | 76 | 16 |
Wheat | 0 | 2 | 5 | 91 |
p (%) | 98 | 73 | 79 | 83 |
r (%) | 65 | 92 | 76 | 91 |
OA (%) | 81 |
DVL3—Jointing | ||||
---|---|---|---|---|
Reference/class | Mayweed | Speedwell | Others | Wheat |
Mayweed | 70 | 12 | 15 | 3 |
Speedwell | 22 | 55 | 15 | 8 |
Others | 5 | 13 | 55 | 27 |
Wheat | 0 | 4 | 13 | 81 |
p (%) | 71 | 65 | 56 | 68 |
r (%) | 70 | 55 | 55 | 81 |
OA (%) | 65 |
PSPNet—Jointing | ||||
---|---|---|---|---|
Reference/class | Mayweed | Speedwell | Others | Wheat |
Mayweed | 63 | 28 | 7 | 2 |
Speedwell | 1 | 88 | 0 | 7 |
Others | 1 | 2 | 71 | 26 |
Wheat | 4 | 3 | 6 | 87 |
p (%) | 0.91 | 0.73 | 0.81 | 0.71 |
r (%) | 0.63 | 0.88 | 0.71 | 0.87 |
OA (%) | 77 |
U-Net—Booting | |||||
---|---|---|---|---|---|
Reference/class | Mayweed | Hairy buttercup | Common vetch | Others | Wheat |
Mayweed | 86 | 6 | 0 | 2 | 6 |
Hairy buttercup | 6 | 86 | 0 | 5 | 3 |
Common vetch | 0 | 2 | 0 | 2 | 96 |
Others | 3 | 0 | 0 | 83 | 14 |
Wheat | 1 | 2 | 0 | 5 | 92 |
p (%) | 90 | 90 | 0 | 86 | 44 |
r (%) | 86 | 86 | 0 | 83 | 92 |
OA (%) | 69 |
DVL3—Booting | |||||
---|---|---|---|---|---|
Reference/class | Mayweed | Hairy buttercup | Common vetch | Others | Wheat |
Mayweed | 62 | 17 | 0 | 0 | 21 |
Hairy buttercup | 2 | 79 | 0 | 0 | 19 |
Common vetch | 6 | 4 | 0 | 0 | 96 |
Others | 1 | 3 | 0 | 0 | 96 |
Wheat | 1 | 2 | 0 | 0 | 97 |
p (%) | 91 | 77 | 0 | 0 | 29 |
r (%) | 62 | 79 | 0 | 0 | 97 |
OA (%) | 48 |
PSPNet—Booting | |||||
---|---|---|---|---|---|
Reference/class | Mayweed | Hairy buttercup | Common vetch | Others | Wheat |
Mayweed | 76 | 3 | 6 | 5 | 10 |
Hairy buttercup | 3 | 84 | 3 | 5 | 5 |
Common vetch | 2 | 3 | 83 | 4 | 5 |
Others | 3 | 4 | 2 | 81 | 10 |
Wheat | 6 | 3 | 4 | 7 | 80 |
p (%) | 84 | 88 | 86 | 78 | 75 |
r (%) | 76 | 84 | 83 | 80 | 80 |
OA (%) | 82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oppong, J.N.; Akumu, C.E.; Dennis, S.; Anyanwu, S. Examining Deep Learning Pixel-Based Classification Algorithms for Mapping Weed Canopy Cover in Wheat Production Using Drone Data. Geomatics 2025, 5, 4. https://doi.org/10.3390/geomatics5010004
Oppong JN, Akumu CE, Dennis S, Anyanwu S. Examining Deep Learning Pixel-Based Classification Algorithms for Mapping Weed Canopy Cover in Wheat Production Using Drone Data. Geomatics. 2025; 5(1):4. https://doi.org/10.3390/geomatics5010004
Chicago/Turabian StyleOppong, Judith N., Clement E. Akumu, Samuel Dennis, and Stephanie Anyanwu. 2025. "Examining Deep Learning Pixel-Based Classification Algorithms for Mapping Weed Canopy Cover in Wheat Production Using Drone Data" Geomatics 5, no. 1: 4. https://doi.org/10.3390/geomatics5010004
APA StyleOppong, J. N., Akumu, C. E., Dennis, S., & Anyanwu, S. (2025). Examining Deep Learning Pixel-Based Classification Algorithms for Mapping Weed Canopy Cover in Wheat Production Using Drone Data. Geomatics, 5(1), 4. https://doi.org/10.3390/geomatics5010004