The MECOVMA Framework: Implementing Machine Learning Under Macroeconomic Volatility for Marketing Predictions
Abstract
:1. Introduction
2. Theoretical Overview
2.1. Fundamentals of Methodological Frameworks
2.2. ML for Marketing Predictions
3. Methodology
3.1. Methodology Phase I: Step Selection
3.1.1. Framework Step Analysis and Relevance Evaluation
3.1.2. Synthesis of the Process Steps
3.2. Methodology Phase II: Content Design
3.2.1. Content Detailing with a Systematic Literature Review
- P1MECOVMA “Predictive Data Collection”
- P2MECOVMA “Data Preparation in a Volatile Macro-Environment”
- P3MECOVMA “Prediction Modeling”
- P4MECOVMA “ML Evaluation and Marketing Application”
3.2.2. Framework Visualization
3.3. Methodology Phase III: Framework Validation
3.3.1. Symposium Presentation with Expert Review
3.3.2. Qualitative Content Analysis for Framework Refinement
4. Discussion
5. Limitations
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ML | Machine Learning |
MECOVMA | Machine learning in MacroECOnomic Volatility for MArketing Predictions |
PMECOVMA | Process step in the MECOVMA framework |
CRISP-DM | Cross-Industry Standard Process for Data Mining |
AI | Artificial Intelligence |
LASSO | Least Absolute Shrinkage and Selection Operator |
(P)ACF | (Partial) Autocorrelation Function |
T1 | Thematic Priority 1: AI/ML/Statistical Learning based Prediction |
T2 | Thematic Priority 2: Marketing/Consumer Behavior |
T3 | Thematic Priority 3: Volatility/Uncertainty/Macroeconomic Environment |
Ri | Relevance evaluation |
References
- Behera, R.K.; Bala, P.K.; Rana, N.P.; Algharabat, R.S.; Kumar, K. Transforming customer engagement with artificial intelligence e-marketing: An e-retailer perspective in the era of retail 4.0. Mark. Intell. Plan. 2024, 42, 1141–1168. [Google Scholar] [CrossRef]
- Duarte, V.; Zuniga-Jara, S.; Contreras, S. Machine Learning and Marketing: A Systematic Literature Review. IEEE Access 2022, 10, 93273–93288. [Google Scholar] [CrossRef]
- Figueiredo, F.; Gonçalves, M.J.A.; Teixeira, S. Information Technology Adoption on Digital Marketing: A Literature Review. Informatics 2021, 8, 74. [Google Scholar] [CrossRef]
- Jafarzadeh, P.; Vähämäki, T.; Nevalainen, P.; Tuomisto, A.; Heikkonen, J. Supporting SME companies in mapping out AI potential: A Finnish AI development case. J. Technol. Transf. 2024. [Google Scholar] [CrossRef]
- Schlegelmilch, B.B.; Sharma, K.; Garg, S. Employing machine learning for capturing COVID-19 consumer sentiments from six countries: A methodological illustration. Int. Mark. Rev. 2022, 40, 869–893. [Google Scholar] [CrossRef]
- Pérez-Pons, M.E.; Parra-Dominguez, J.; Omatu, S.; Herrera-Viedma, E.; Corchado, J.M. Machine Learning and Traditional Econometric Models: A Systematic Mapping Study. J. Artif. Intell. Soft Comput. Res. 2022, 12, 79–100. [Google Scholar] [CrossRef]
- Van Giffen, B.; Herhausen, D.; Fahse, T. Overcoming the pitfalls and perils of algorithms: A classification of machine learning biases and mitigation methods. J. Bus. Res. 2022, 144, 93–106. [Google Scholar] [CrossRef]
- Herhausen, D.; Bernritter, S.F.; Ngai, E.W.; Kumar, A.; Delen, D. Machine learning in marketing: Recent progress and future research directions. J. Bus. Res. 2024, 170, 114254. [Google Scholar] [CrossRef]
- Eichholz, J.; Knauer, T.; Winkelmann, S. Digital Maturity of Forecasting and its Impact in Times of Crisis. Schmalenbach J. Bus. Res. 2023, 75, 443–481. [Google Scholar] [CrossRef]
- Eger, L.; Komárková, L.; Egerová, D.; Mičík, M. The effect of COVID-19 on consumer shopping behaviour: Generational cohort perspective. J. Retail. Consum. Serv. 2021, 61, 102542. [Google Scholar] [CrossRef]
- Schwarz, R.; Maaß, C. Die wichtigsten Export- und Importgüter in Deutschland im Jahr 2020. WiSt Wirtschaftswiss. Stud. 2021, 50, 36–37. [Google Scholar] [CrossRef]
- He, B.; Mirchandani, P.; Shen, Q.; Yang, G. How should local brick-and-mortar retailers offer delivery service in a pandemic world? Self-building vs. O2O platform. Transp. Res. Part E Logist. Transp. Rev. 2021, 154, 102457. [Google Scholar] [CrossRef] [PubMed]
- Kraemer-Eis, H.; Block, J.; Lorenzen, S.; Diegel, W.; Botsari, A.; Lang, F. Entrepreneurial finance in Europe and the Russian war against Ukraine. J. Technol. Transf. 2024. [Google Scholar] [CrossRef]
- Nasir, M.A.; Nugroho, A.D.; Lakner, Z. Impact of the Russian–Ukrainian Conflict on Global Food Crops. Foods 2022, 11, 2979. [Google Scholar] [CrossRef]
- Lucenti, F. The ‘China Threat’: Stereotypical representations in the US competition with China. Int. Politics 2024. [Google Scholar] [CrossRef]
- Anderl, C.; Caporale, G.M. Functional shocks to inflation expectations and real interest rates and their macroeconomic effects. Rev. World Econ. 2024. [Google Scholar] [CrossRef]
- Foris, T.; Tecău, A.S.; Dragomir, C.; Foris, D. The Start-Up Manager in Times of Crisis: Challenges and Solutions for Increasing the Resilience of Companies and Sustainable Reconstruction. Sustainability 2022, 14, 9140. [Google Scholar] [CrossRef]
- Yan, S.; Yao, X.; Ma, B. Chinese transnational corporations in the Ukraine crisis: Risk perception and mitigation. Transnatl. Corp. Rev. 2022, 14, 371–381. [Google Scholar] [CrossRef]
- Basdekis, C.; Christopoulos, A.; Katsampoxakis, I.; Nastas, V. The Impact of the Ukrainian War on Stock and Energy Markets: A Wavelet Coherence Analysis. Energies 2022, 15, 8174. [Google Scholar] [CrossRef]
- Reis, C.; Ruivo, P.; Oliveira, T.; Faroleiro, P. Assessing the drivers of machine learning business value. J. Bus. Res. 2020, 117, 232–243. [Google Scholar] [CrossRef]
- Kmiecik, M. Supply and demand prediction by 3PL for assortment planning. Manag. Sci. Lett. 2024, 15, 97–112. [Google Scholar] [CrossRef]
- Kraiem, I.B.; Mabrouk, M.B.; De Jode, L. A Comparative Study of Machine Learning Algorithm for Predicting Project Management Methodology. Procedia Comput. Sci. 2023, 225, 665–675. [Google Scholar] [CrossRef]
- MacKay, C.; Klement, W.; VanBerkel, P.; Lamond, N.; Urquhart, R.; Rigby, M. A framework for implementing machine learning in healthcare based on the concepts of preconditions and postconditions. Healthc. Anal. 2023, 3, 100155. [Google Scholar] [CrossRef]
- Karl, D. Forecasting e-commerce consumer returns: A systematic literature review. Manag. Rev. Q. 2024. [Google Scholar] [CrossRef]
- Maaß, C.; Kroll, L.; Lingenfelder, M. Requirements of Environmentally-Aware Consumers on the Implementation and Communication of Sustainability Measures in the Beverage Industry: A Qualitative Kano-Model Approach. J. Food Prod. Mark. 2024, 30, 118–133. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Riaboff, L.; Poggi, S.; Madouasse, A.; Couvreur, S.; Aubin, S.; Bédère, N.; Goumand, E.; Chauvin, A.; Plantier, G. Development of a methodological framework for a robust prediction of the main behaviours of dairy cows using a combination of machine learning algorithms on accelerometer data. Comput. Electron. Agric. 2020, 169, 105179. [Google Scholar] [CrossRef]
- Brackmann, C.; Hütsch, M.; Wulfert, T. Identifying Application Areas for Machine Learning in the Retail Sector. SN Comput. Sci. 2023, 4, 375. [Google Scholar] [CrossRef] [PubMed]
- Esmeli, R.; Bader-El-Den, M.; Abdullahi, H. Towards early purchase intention prediction in online session-based retailing systems. Electron. Mark. 2021, 31, 697–715. [Google Scholar] [CrossRef]
- Esmeli, R.; Bader-El-Den, M.; Abdullahi, H. An analysis of the effect of using contextual and loyalty features on early purchase prediction of shoppers in e-commerce domain. J. Bus. Res. 2022, 147, 420–434. [Google Scholar] [CrossRef]
- Geiler, L.; Affeldt, S.; Nadif, M. A survey on machine learning methods for churn prediction. Int. J. Data Sci. Anal. 2022, 14, 217–242. [Google Scholar] [CrossRef]
- Kharfan, M.; Chan, V.W.K.; Efendigil, T.F. A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches. Ann. Oper. Res. 2021, 303, 159–174. [Google Scholar] [CrossRef]
- Potrawa, T.; Tetereva, A. How much is the view from the window worth? Machine learning-driven hedonic pricing model of the real estate market. J. Bus. Res. 2022, 144, 50–65. [Google Scholar] [CrossRef]
- Tsao, Y.; Chen, Y.; Chiu, S.; Lu, J.; Vu, T. An innovative demand forecasting approach for the server industry. Technovation 2022, 110, 102371. [Google Scholar] [CrossRef]
- Pfister, J.A.; Peda, P.; Otley, D. A methodological framework for theoretical explanation in performance management and management control systems research. Qual. Res. Account. Manag. 2022, 20, 201–228. [Google Scholar] [CrossRef]
- Ordenes, F.V.; Silipo, R. Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications. J. Bus. Res. 2021, 137, 393–410. [Google Scholar] [CrossRef]
- Kallingal, F.R.; Firoz, M.C. Developing a methodological framework for capturing regional disparities in social development. Reg. Sci. Policy Pract. 2022, 14, 1085–1112. [Google Scholar] [CrossRef]
- Moschis, G.P. Academic Research in Business and the Social Sciences; Springer Nature: Cham, Switzerland, 2024. [Google Scholar] [CrossRef]
- Corallo, A.; Lazoi, M.; Lezzi, M.; Luperto, A. Cybersecurity awareness in the context of the Industrial Internet of Things: A systematic literature review. Comput. Ind. 2022, 137, 103614. [Google Scholar] [CrossRef]
- Pradhan, R.; Dash, A.K. An overview of microservices. In ICDSMLA 2019. Lecture Notes in Electrical Engineering; Kumar, A., Paprzycki, M., Gunjan, V., Eds.; Springer: Singapore, 2020; Volume 601. [Google Scholar] [CrossRef]
- McMeekin, N.; Wu, O.; Germeni, E.; Briggs, A. How methodological frameworks are being developed: Evidence from a scoping review. BMC Med. Res. Methodol. 2020, 20, 173. [Google Scholar] [CrossRef]
- Crouch, M.C.C.; Kim, S.M.; Asquith-Heinz, Z.; Decker, E.; Andrew, N.T.; Lewis, J.P.; Rosich, R.M. Indigenous Elder-centered methodology: Research that decolonizes and indigenizes. AlterNative 2023, 19, 447–456. [Google Scholar] [CrossRef]
- Rweyendela, A.G.; Pauline, N.M.; Lema, G.A. Strategic environmental assessment for low-carbon development: Developing an analysis framework. J. Environ. Plan. Manag. 2023, 66, 2223–2246. [Google Scholar] [CrossRef]
- Veras, M.; Labbé, D.R.; Furlano, J.; Zakus, D.; Rutherford, D.; Pendergast, B.; Kairy, D. A framework for equitable virtual rehabilitation in the metaverse era: Challenges and opportunities. Front. Rehabil. Sci. 2023, 4, 1241020. [Google Scholar] [CrossRef] [PubMed]
- Cruz Rivera, S.; Kyte, D.G.; Aiyegbusi, O.L.; Keeley, T.J.; Calvert, M.J. Assessing the impact of healthcare research: A systematic review of methodological frameworks. PLoS Med. 2017, 14, e1002370. [Google Scholar] [CrossRef]
- Andrade, J.; Rodríguez, S.; Seoane, M.; Suárez, S. Knowledge Management Systems Procedural Development. In Encyclopedia of Artificial Intelligence; IGI Global: Hershey, PA, USA, 2009; pp. 975–981. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Heyn, H.; Knauss, E. Identifying and managing data quality requirements: A design science study in the field of automated driving. Softw. Qual. J. 2023, 32, 313–360. [Google Scholar] [CrossRef]
- Partelow, S. What is a framework? Understanding their purpose, value, development and use. J. Environ. Stud. Sci. 2023, 13, 510–519. [Google Scholar] [CrossRef]
- Schlumberger, J.; Haasnoot, M.; Aerts, J.; De Ruiter, M. Proposing DAPP-MR as a disaster risk management pathways framework for complex, dynamic multi-risk. iScience 2022, 25, 105219. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Khan, A.; Smith, K.; Romero, J.; Shen, X.; Shirowzhan, S.; Li, H.; Tahmasebinia, F. BIM and Digital Twin for Developing Convergence Technologies as Future of Digital Construction. Buildings 2023, 13, 441. [Google Scholar] [CrossRef]
- Cabour, G.; Morales-Forero, A.; Ledoux, É.; Bassetto, S. An explanation space to align user studies with the technical development of Explainable AI. AI Soc. 2023, 38, 869–887. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. Opinion Paper: “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Pain, C.C.; Navon, I.M. Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network. Comput. Methods Appl. Mech. Eng. 2020, 365, 113000. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Mundlos, P. The impact of artificial intelligence on managerial attention allocation for discontinuous change: A conceptual framework. Manag. Rev. Q. 2024. [Google Scholar] [CrossRef]
- Kozak, J.; Kania, K.; Juszczuk, P.; Mitręga, M. Swarm intelligence goal-oriented approach to data-driven innovation in customer churn management. Int. J. Inf. Manag. 2021, 60, 102357. [Google Scholar] [CrossRef]
- Seyedan, M.; Mafakheri, F. Predictive big data analytics for supply chain demand forecasting: Methods, applications, and research opportunities. J. Big Data 2020, 7, 53. [Google Scholar] [CrossRef]
- Azungah, T. Qualitative research: Deductive and inductive approaches to data analysis. Qual. Res. J. 2018, 18, 383–400. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review. Data 2021, 6, 55. [Google Scholar] [CrossRef]
- Kmiecik, M.; Zangana, H. Supporting of manufacturing system based on demand forecasting tool. LogForum 2022, 18, 35–50. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S. Research on Collaborative Management in Supply Chain Crisis. Procedia Environ. Sci. 2011, 10, 141–146. [Google Scholar] [CrossRef]
- Zougagh, N.; Charkaoui, A.; Echchatbi, A. Prediction Models of Demand in Supply Chain. Procedia Comput. Sci. 2020, 177, 462–467. [Google Scholar] [CrossRef]
- Ma, L.; Sun, B. Machine Learning and AI in Marketing—Connecting Computing Power to Human Insights. Int. J. Res. Mark. 2020, 37, 481–504. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. An Introduction to Statistical Learning: With Applications in Python; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Murphy, K.P. Probabilistic Machine Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Bandi, A.; Adapa, P.V.S.R.; Kuchi, Y.E.V.P.K. The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges. Future Internet 2023, 15, 260. [Google Scholar] [CrossRef]
- Bundi, D.N. Adoption of Machine Learning Systems within the Health Sector: A Systematic Review, Synthesis and Research Agenda. Digit. Transform. Soc. 2023, 3, 99–120. [Google Scholar] [CrossRef]
- Sharma, H.; Das, S. A Brief Study of Generative Adversarial Networks and Their Applications in Image Synthesis. Multimed. Tools Appl. 2023, 83, 21551–21581. [Google Scholar] [CrossRef]
- Ahmed, S.; Chakrabortty, R.K.; Essam, D.L.; Ding, W. Poly-Linear Regression with Augmented Long Short Term Memory Neural Network: Predicting Time Series Data. Inf. Sci. 2022, 606, 573–600. [Google Scholar] [CrossRef]
- Gandhudi, M.; PJA, A.; Velayudham, V.; Nagineni, L.; GR, G. Explainable Causal Variational Autoencoders Based Equivariant Graph Neural Networks for Analyzing the Consumer Purchase Behavior in E-Commerce. Eng. Appl. Artif. Intell. 2024, 136, 108988. [Google Scholar] [CrossRef]
- Yang, C.; Chang, P. Forecasting the Demand for Container Throughput Using a Mixed-Precision Neural Architecture Based on CNN–LSTM. Mathematics 2020, 8, 1784. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Zhang, Z.; Li, M.; Li, Z.; Khan, S.; Chen, H.; Cheng, G. Blockchain-Based Practical and Privacy-Preserving Federated Learning with Verifiable Fairness. Mathematics 2023, 11, 1091. [Google Scholar] [CrossRef]
- Muth, M.; Lingenfelder, M.; Nufer, G. The Application of Machine Learning for Demand Prediction under Macroeconomic Volatility: A Systematic Literature Review. Manag. Rev. Q. 2024. [Google Scholar] [CrossRef]
- Raizada, S.; Saini, J.R. Comparative Analysis of Supervised Machine Learning Techniques for Sales Forecasting. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 102–110. [Google Scholar] [CrossRef]
- Torraco, R.J. Writing Integrative Literature Reviews: Guidelines and Examples. Hum. Resour. Dev. Rev. 2005, 4, 356–367. [Google Scholar] [CrossRef]
- Graham, K.E.R.; Chorzempa, H.L.; Valentine, P.A.; Magnan, J. Evaluating Health Research Impact: Development and Implementation of the Alberta Innovates-Health Solutions Impact Framework. Res. Eval. 2012, 21, 354–367. [Google Scholar] [CrossRef]
- Guinea, J.; Sela, E.; Gómez-Núñez, A.J.; Mangwende, T.; Ambali, A.; Ngum, N.; Jaramillo, H.; Gallego, J.M.; Patiño, A.; Latorre, C.; et al. Impact Oriented Monitoring: A New Methodology for Monitoring and Evaluation of International Public Health Research Projects. Res. Eval. 2015, 24, 131–145. [Google Scholar] [CrossRef]
- Efat, M.I.A.; Hajek, P.; Abedin, M.Z.; Azad, R.U.; Jaber, M.A.; Aditya, S.; Hassan, M.K. Deep-Learning Model Using Hybrid Adaptive Trend Estimated Series for Modelling and Forecasting Sales. Ann. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Gharibshah, Z.; Zhu, X. User Response Prediction in Online Advertising. ACM Comput. Surv. 2021, 54, 1–43. [Google Scholar] [CrossRef]
- Ngai, E.W.; Wu, Y. Machine Learning in Marketing: A Literature Review, Conceptual Framework, and Research Agenda. J. Bus. Res. 2022, 145, 35–48. [Google Scholar] [CrossRef]
- Jiang, Z.; Ji, R.; Chang, K. A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment. J. Risk Financ. Manag. 2020, 13, 155. [Google Scholar] [CrossRef]
- Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R. CRISP-DM 1.0: Step-by-Step Data Mining Guide. The CRISP-DM Consortium: 2000. Available online: https://www.kde.cs.uni-kassel.de/wp-content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf (accessed on 1 October 2023).
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2019, 39, 93–112. [Google Scholar] [CrossRef]
- Kallio, H.; Pietilä, A.; Johnson, M.; Kangasniemi, M. Systematic Methodological Review: Developing a Framework for a Qualitative Semi-Structured Interview Guide. J. Adv. Nurs. 2016, 72, 2954–2965. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, M.; Thomas, S.; Harden, M.; Parker, G.; Street, A.; Eastwood, A. Developing a Methodological Framework for Organisational Case Studies: A Rapid Review and Consensus Development Process. Health Serv. Deliv. Res. 2016, 4, A67. [Google Scholar] [CrossRef]
- Squires, H.; Chilcott, J.; Akehurst, R.; Burr, J.; Kelly, M.P. A Framework for Developing the Structure of Public Health Economic Models. Value Health 2016, 19, 588–601. [Google Scholar] [CrossRef]
- Punia, S.; Shankar, S. Predictive Analytics for Demand Forecasting: A Deep Learning-Based Decision Support System. Knowl. Based Syst. 2022, 258, 109956. [Google Scholar] [CrossRef]
- Wang, C.-H. Considering Economic Indicators and Dynamic Channel Interactions to Conduct Sales Forecasting for Retail Sectors. Comput. Ind. Eng. 2022, 165, 107965. [Google Scholar] [CrossRef]
- Abolghasemi, M.; Beh, E.; Tarr, G.; Gerlach, R. Demand Forecasting in Supply Chain: The Impact of Demand Volatility in the Presence of Promotion. Comput. Ind. Eng. 2020, 142, 106380. [Google Scholar] [CrossRef]
- Claveria, O.; Monte, E.; Torra, S. Economic Forecasting with Evolved Confidence Indicators. Econ. Model. 2020, 93, 576–585. [Google Scholar] [CrossRef]
- Hasheminejad, S.A.; Shabaab, M.; Javadinarab, N. Developing Cluster-Based Adaptive Network Fuzzy Inference System Tuned by Particle Swarm Optimization to Forecast Annual Automotive Sales: A Case Study in Iran Market. Int. J. Fuzzy Syst. 2022, 24, 2719–2728. [Google Scholar] [CrossRef]
- Ma, S.; Fildes, R. Forecasting Third-Party Mobile Payments with Implications for Customer Flow Prediction. Int. J. Forecast. 2020, 36, 739–760. [Google Scholar] [CrossRef]
- Castillo, P.A.; Mora, A.M.; Faris, H.; Merelo, J.; García-Sánchez, P.; Fernández-Ares, A.J.; De Las Cuevas, P.; García-Arenas, M.I. Applying Computational Intelligence Methods for Predicting the Sales of Newly Published Books in a Real Editorial Business Management Environment. Knowl. Based Syst. 2017, 115, 133–151. [Google Scholar] [CrossRef]
- Quintero, Y.; Ardila, D.; Aguilar, J.; Cortes, S. Analysis of the Socioeconomic Impact Due to COVID-19 Using a Deep Clustering Approach. Appl. Soft Comput. 2022, 129, 109606. [Google Scholar] [CrossRef] [PubMed]
- Alsharef, A.; Aggarwal, K.; Sonia, N.; Kumar, M.; Mishra, A. Review of ML and AutoML Solutions to Forecast Time-Series Data. Arch. Comput. Methods Eng. 2022, 29, 5297–5311. [Google Scholar] [CrossRef] [PubMed]
- Poza, C.; Monge, M. Forecasting Spanish Economic Activity in Times of COVID-19 by Means of the RT-LEI and Machine Learning Techniques. Appl. Econ. Lett. 2023, 30, 472–477. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Lakshmi, K.S.; Tongkachok, K.; Alanya-Beltran, J.; Ramirez-Asis, E.; Perez-Falcon, J. Empirical Analysis in Analysing the Major Factors of Machine Learning in Enhancing the E-Business Through Structural Equation Modelling (SEM) Approach. Int. J. Syst. Assur. Eng. Manag. 2022, 13 (Suppl. S1), 681–689. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Z. Customer Churn Prediction for Commercial Banks Using Customer-Value-Weighted Machine Learning Models. J. Credit Risk 2021, 17, 15–42. [Google Scholar] [CrossRef]
- Puterman, E.; Weiss, J.; Hives, B.A.; Gemmill, A.; Karasek, D.; Mendes, W.B.; Rehkopf, D.H. Predicting Mortality from 57 Economic, Behavioral, Social, and Psychological Factors. Proc. Natl. Acad. Sci. USA 2020, 117, 16273–16282. [Google Scholar] [CrossRef] [PubMed]
- Gürses-Tran, G.; Monti, A. Advances in Time Series Forecasting Development for Power Systems’ Operation with MLOps. Forecasting 2022, 4, 501–524. [Google Scholar] [CrossRef]
- Liu, C.; Gu, J.; Yang, M. A Simplified LSTM Neural Networks for One Day-Ahead Solar Power Forecasting. IEEE Access 2021, 9, 17174–17195. [Google Scholar] [CrossRef]
- Tudor, C. The Impact of the COVID-19 Pandemic on the Global Web and Video Conferencing SaaS Market. Electronics 2022, 11, 2633. [Google Scholar] [CrossRef]
- Ryu, G.; Nasridinov, A.; Rah, H.; Yoo, K. Forecasts of the Amount Purchase Pork Meat by Using Structured and Unstructured Big Data. Agriculture 2020, 10, 21. [Google Scholar] [CrossRef]
- Albrecht, T.; Rausch, T.M.; Derra, N.D. Call Me Maybe: Methods and Practical Implementation of Artificial Intelligence in Call Center Arrivals’ Forecasting. J. Bus. Res. 2021, 123, 267–278. [Google Scholar] [CrossRef]
- Ballestar, M.T.; Grau-Carles, P.; Sainz, J. Predicting Customer Quality in E-Commerce Social Networks: A Machine Learning Approach. Rev. Manag. Sci. 2019, 13, 589–603. [Google Scholar] [CrossRef]
- Coveney, P.V.; Dougherty, E.R.; Highfield, R.R. Big Data Need Big Theory Too. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20160153. [Google Scholar] [CrossRef]
- Gennatas, E.D.; Friedman, J.H.; Ungar, L.H.; Pirracchio, R.; Eaton, E.; Reichmann, L.G.; Interian, Y.; Luna, J.M.; Simone, C.B.; Auerbach, A.; et al. Expert-Augmented Machine Learning. Proc. Natl. Acad. Sci. USA 2020, 117, 4571–4577. [Google Scholar] [CrossRef] [PubMed]
- Bohanec, M.; Borštnar, M.K.; Robnik-Šikonja, M. Explaining Machine Learning Models in Sales Predictions. Expert Syst. Appl. 2017, 71, 416–428. [Google Scholar] [CrossRef]
- Kessler, R.; Gómez, J.M. Implikationen von Machine Learning auf das Datenmanagement in Unternehmen. HMD Prax. Wirtsch. Inform. 2020, 57, 89–105. [Google Scholar] [CrossRef]
- Mirza, B.; Li, X.; Lauwers, K.; Reddy, B.; Muller, A.; Wozniak, C.; Djali, S. A Clinical Site Workload Prediction Model with Machine Learning Lifecycle. Healthc. Anal. 2023, 3, 100159. [Google Scholar] [CrossRef]
- Muth, M. Mecovma-Framework: Implementing Machine Learning under Macroeconomic Volatility for Marketing Predictions [Conference presentation]. In Proceedings of the 44th International Symposium on Forecasting, Dijon, France, 30 June–3 July 2024. [Google Scholar]
- Kuckartz, U.; Rädiker, S. Analyzing Qualitative Data with MAXQDA: Text, Audio, and Video; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Mayring, P. Qualitative Inhaltsanalyse: Grundlagen und Techniken, 13th ed.; Beltz: Weinheim, Germany, 2022. [Google Scholar]
- Eckert, T.; Hüsig, S. Innovation Portfolio Management: A Systematic Review and Research Agenda in Regards to Digital Service Innovations. Manag. Rev. Q. 2022, 72, 187–230. [Google Scholar] [CrossRef]
- Medjedović, I. Qualitative Daten für die Sekundäranalyse. In Handbuch Methoden der Empirischen Sozialforschung; Baur, N., Blasius, J., Eds.; Springer: Wiesbaden, Germany, 2022; pp. 271–282. [Google Scholar] [CrossRef]
- Meyer, C.; Verl, C.M.Z. Ergebnispräsentation in der Qualitativen Forschung. In Handbuch Methoden der Empirischen Sozialforschung; Baur, N., Blasius, J., Eds.; Springer: Wiesbaden, Germany, 2022; pp. 295–315. [Google Scholar] [CrossRef]
- Taur, S. Observational Designs for Real-World Evidence Studies. Perspect. Clin. Res. 2022, 13, 12. [Google Scholar] [CrossRef]
- Chetwynd, E. Critical Analysis of Reliability and Validity in Literature Reviews. J. Hum. Lact. 2022, 38, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Us, Y.; Pimonenko, T.; Lyulyov, O. Corporate Social Responsibility and Renewable Energy Development for the Green Brand within SDGs: A Meta-Analytic Review. Energies 2023, 16, 2335. [Google Scholar] [CrossRef]
- Oldemeyer, L.; Jede, A.; Teuteberg, F. Investigation of Artificial Intelligence in SMEs: A Systematic Review of the State of the Art and the Main Implementation Challenges. Manag. Rev. Q. 2024. [Google Scholar] [CrossRef]
- Weimar, S.N.; Martjan, R.S.; Terzidis, O. Conceptualizing the Landscape of Digital Health Entrepreneurship: A Systematic Review and Research Agenda. Manag. Rev. Q. 2024. [Google Scholar] [CrossRef]
- Blay, M.; Gauld, C.; Espi, P.; Falissard, B. Confirmation Bias and Quantitative Approach in Psychiatry: Should Ideological Competing Interests Be Declared? Front. Psychiatry 2024, 15, 1365733. [Google Scholar] [CrossRef]
- Braithwaite, R.S.; Ban, K.; Stevens, E.R.; Caniglia, E.C. Rounding Up the Usual Suspects: Confirmation Bias in Epidemiological Research. Int. J. Epidemiol. 2021, 50, 1053–1057. [Google Scholar] [CrossRef]
- Lange, R.D.; Chattoraj, A.; Beck, J.M.; Yates, J.L.; Haefner, R.M. A Confirmation Bias in Perceptual Decision-Making Due to Hierarchical Approximate Inference. PLoS Comput. Biol. 2021, 17, e1009517. [Google Scholar] [CrossRef] [PubMed]
- Pagano, T.P.; Loureiro, R.B.; Lisboa, F.V.N.; Peixoto, R.M.; Guimarães, G.A.S.; Cruz, G.O.R.; Araujo, M.M.; Santos, L.L.; Cruz, M.A.S.; Oliveira, E.L.S.; et al. Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big Data Cogn. Comput. 2023, 7, 15. [Google Scholar] [CrossRef]
- Barari, M.; Ferm, L.C.; Quach, S.; Thaichon, P.; Ngo, L. The Dark Side of Artificial Intelligence in Marketing: Meta-Analytics Review. Mark. Intell. Plan. 2024, 42, 1234–1256. [Google Scholar] [CrossRef]
- Majeed, A.; Hwang, S.O. Quantifying the Vulnerability of Attributes for Effective Privacy Preservation Using Machine Learning. IEEE Access 2023, 11, 4400–4411. [Google Scholar] [CrossRef]
Study | Framework (Name) | P | (AI/ML/Statistical Learning Based Prediction) | (Marketing/Consumer Behavior) | (Volatility/Uncertainty/Macroeconomic Environment) | ||||
---|---|---|---|---|---|---|---|---|---|
Study | Frw. | Study | Frw. | Study | Frw. | ||||
Tsao et al. [34] | Forecasting Framework for Value of ML and External Information Index | 3 | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | 5/6 |
Ma and Sun [63] | AI-Driven Marketing Landscape | 3 | ✓ | ✓ | ✓ | ✓ | ✓ | ✗ | 5/6 |
Efat et al. [78] | Forecasting Pipeline | 4 | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | 4/6 |
Gharibshah and Zhu [79] | User Response Prediction Workflow | 3 | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | 4/6 |
Herhausen et al. [8] | Simplified Framework for ML in Marketing | 4 | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | 4/6 |
Kharfan et al. [32] | Methodology | 3 | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | 4/6 |
Raizada and Saini [74] | Methodology for Sales Forecasting | 8 | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | 4/6 |
Ngai and Wu [80] | Conceptual Framework for ML Application in Marketing | 7 | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | 4/6 |
Jiang et al. [81] | Machine Learning Integrated Portfolio Rebalance Framework | 2 | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ | 4/6 |
Van Giffen et al. [7] | Conceptual Approach: Using Machine Learning for Marketing Problems | 4 | ✓ | ✓ | ✓ | ✓ | ✗ | ✗ | 4/6 |
Potrawa and Tetereva [33] | Workflow Diagram | 5 | ✓ | ✓ | ✓ | ✗ | ✓ | ✗ | 4/6 |
Brackmann et al. [28] | ML Framework | 6 | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | 3/6 |
Geiler et al. [31] | ML Pipeline for Churn Prediction | 4 | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | 3/6 |
Jafarzadeh et al. [4] | CRISP-DM Framework | 6 | ✓ | ✓ | ✓ | ✗ | ✗ | ✗ | 3/6 |
Esmeli et al. [30] | Framework for Purchase Intention Prediction | 3 | ✓ | ✗ | ✓ | ✓ | ✗ | ✗ | 3/6 |
Study | P (Names) | |
---|---|---|
Tsao et al. [34] | (1) Operational Data (Internal Data, Extremal Information Index), (2) Forecasting Framework (Company’s Model/Time Series Forecasting, Machine Learning Model/Baseline Forecasting, Clustering/Classification/Multiple Regression/Intelligent Forecasting), (3) Value of Machine Learning Model, Value of External Information Index | 5/6 |
Ma and Sun [63] | (1) AI and Machine Learning, (2) Marketing Actions (Search, Marketing Mix, Recommendation, Engagement, Attribution), (3) Industry Trends (Interactive and Media-Rich, Personalization, Real-Time Automation, Customer-Journey Focus) | 5/6 |
Efat et al. [78] | (1) Data Model, (2) Feature Extraction (Characteristic based Clustering, Convolutional Neural Network/Gated Recurrent Unit, 1-D Feature Array), (3) Feature Composition, (4) Prediction (Long Short-Term Memory) | 4/6 |
Gharibshah and Zhu [79] | (1) Data (Raw Data, Labeling, Preprocessing), (2) Learning (Method, Train), (3) Output (Prediction, Ordered List) | 4/6 |
Herhausen et al. [8] | (1) Relevant Marketing Phenomena Data, (2) Preprocessing, Annotation, and Feature Extraction, (3) Train and Validate ML Model, (4) Classification and Prediction Inform Marketing Decision | 4/6 |
Kharfan et al. [32] | (1) Data Pre-processing (Self-through (Point of Sale) Data, Data Filtering/Data Aggregation, Feature Engineering/Feature Selection), (2) Three-Step Model (Cluster, Classification, Prediction), (3) Model Results (Comparing the Forecasting Accuracy and Bias) | 4/6 |
Raizada and Saini [74] | (1) Dataset, (2) Data Cleaning and Preparation, (3) Splitting the Data (Training Data, Testing Data), (4) Pre-Processing, (5) Feature Selection/Feature Measurement, (6) Learning/Regression Technique, (7) Applied (Linear Regression/Random Forecast Regression/K-Nearest Neighbors Regression/Support Vector Regression Technique/Extra Tree Regression), (8) Prediction of Sales | 4/6 |
Ngai and Wu [80] | (1) Supervised/Unsupervised/Reinforcement Learning, (2) ML Algorithm, (3) Text Analysis/Voice Analytics/Image and Video Analytics, (4) ML Tools, (5) ML Technologies, (6) Product, Promotion, People, Price, Place, Process, Physical Evidence, (7) ML Application in Marketing | 4/6 |
Jiang et al. [81] | (1) Predictive Modelling (Historical Market Index Data, Technical Indicators, Machine Learning Models for Market Movement Prediction, Risk-Aversion Coefficient Adjustment), (2) Portfolio Optimization Modeling (Historical Asset/Stock Data, Mean-Risk Portfolio Optimization Model, Portfolio Weights Allocation) | 4/6 |
Van Giffen et al. [7] | (1) Relevant Population, (2) (Generates) Data, (3) (Trains) Machine Learning Model, (4) Predictions Trigger Marketing Decisions and Actions | 4/6 |
Potrawa and Tetereva [33] | (1) Gathering Data (Google Maps, Rental Website, Characteristics, Description, Photos), (2) Extracting Features (Keyword-Based Variables, Type of the View, Location-Based Variables), (3) Data Cleaning (Combine Data Sources into Final Data Set), (4) Regression (Ordinary Least Squares Model, Random Forest), (5) Explanatory Analysis (Comparison of the Models, Variable Importance, Partial Dependence Plot, Local Interpretable Model-agnostic Explanations) | 4/6 |
Brackmann et al. [28] | (1) Business Insight, (2) Data Understanding, (3) Data Preparation, (4) Modeling Phase, (5) Evaluation Phase, (6) Go Live | 3/6 |
Geiler et al. [31] | (1) Data, (2) Sampling (Over-/Undersampling, Hybrid), (3) Model Fitting (Supervised Learning, Semi-Supervised Learning), (4) Evaluation (Cross (Stratified) (K-fold) Validation, Metrics) | 3/6 |
Jafarzadeh et al. [4] | (1) Business Understanding, (2) Data Understanding, (3) Data Preparation, (4) Modeling, (5) Evaluation, (6) Deployment | 3/6 |
Esmeli et al. [30] | (1) Data Collection, Pre-Processing, and Data Generation, (2) Feature Extraction and Model Creation, (3) Data Mining Model Evaluation | 3/6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muth, M. The MECOVMA Framework: Implementing Machine Learning Under Macroeconomic Volatility for Marketing Predictions. Forecasting 2025, 7, 3. https://doi.org/10.3390/forecast7010003
Muth M. The MECOVMA Framework: Implementing Machine Learning Under Macroeconomic Volatility for Marketing Predictions. Forecasting. 2025; 7(1):3. https://doi.org/10.3390/forecast7010003
Chicago/Turabian StyleMuth, Manuel. 2025. "The MECOVMA Framework: Implementing Machine Learning Under Macroeconomic Volatility for Marketing Predictions" Forecasting 7, no. 1: 3. https://doi.org/10.3390/forecast7010003
APA StyleMuth, M. (2025). The MECOVMA Framework: Implementing Machine Learning Under Macroeconomic Volatility for Marketing Predictions. Forecasting, 7(1), 3. https://doi.org/10.3390/forecast7010003