Tailoring Structural, Emulsifying, and Interfacial Properties of Rice Bran Protein Through Limited Enzymatic Hydrolysis After High-Hydrostatic-Pressure Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HHP Pretreatment
2.3. Preparation of RBPH
2.4. Measurement of Hydrolysate Properties
2.4.1. Particle Size Measurement
2.4.2. ζ-Potential Measurement
2.4.3. Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS- PAGE) Analysis
2.4.4. Fourier Transform Infrared (FTIR) Spectroscopy Measurements
2.4.5. Measurement of the Fluorescence Spectrometry
2.4.6. Surface Morphology Analysis
2.4.7. High-Performance Size Exclusion Chromatography (HPSEC) Measurements
2.4.8. Emulsifying Properties
2.5. Preparation of Hydrolysate Emulsion
2.6. Measurement of Hydrolysate Emulsion Properties
2.6.1. Measurement of the Droplet Size and ζ-Potential of Emulsion
2.6.2. Turbidity
2.6.3. Contact Angle and Interfacial Tension
2.6.4. Morphology of Emulsion
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Limited Enzymatic Hydrolysis on the Physicochemical Properties of RBPH
3.1.1. Relationship Between Hydrolysis Degree and Hydrolysis Time
3.1.2. Effect of Limited Enzymatic Hydrolysis on the Particle Size of RBPH
3.1.3. Effect of Limited Enzymatic Hydrolysis on the ζ-Potential of RBPH
3.1.4. Effect of Limited Enzymatic Hydrolysis on the SDS-PAGE of RBPH
3.1.5. Effect of Limited Enzymatic Hydrolysis on the Secondary Structure of RBPH
3.1.6. Effect of Limited Enzymatic Hydrolysis on the Fluorescence Intensity of RBPH
3.1.7. Effect of Limited Enzymatic Hydrolysis on the Microstructure of RBPH
3.1.8. Effect of Limited Enzymatic Hydrolysis on the Molecular-Weight Distribution Profiles of RBPH
3.1.9. Effect of Limited Enzymatic Hydrolysis on the EAI and ESI of RBPH
3.2. Effect of Limited Enzymatic Hydrolysis on the Interfacial Properties of RBPH Emulsion
3.2.1. Effect of Limited Enzymatic Hydrolysis on the Droplet Size of RBPH Emulsion
3.2.2. Effect of Limited Enzymatic Hydrolysis on the ζ-Potential of RBPH Emulsion
3.2.3. Effect of Limited Enzymatic Hydrolysis on the Turbidity of RBPH Emulsion
3.2.4. Effect of Limited Enzymatic Hydrolysis on Contact Angle and Interfacial Tension of RBPH Emulsion
3.2.5. Effect of Limited Enzymatic Hydrolysis on the Microscopic Morphology of RBPH Emulsion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaci, M.; Arab-Tehrany, E.; Desjardins, I.; Banon-Desobry, S.; Desobry, S. Emulsifier free emulsion: Comparative study between a new high frequency ultrasound process and standard emulsification processes. J. Food Eng. 2017, 194, 109–118. [Google Scholar] [CrossRef]
- Mcclements, D.J.; Bai, L.; Chung, C. Recent advances in the utilization of natural emulsifiers to form and stabilize emulsions. Annu. Rev. Food Sci. Technol. 2017, 8, 205–236. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Roos, Y.H.; Biliaderis, C.G.; Miao, S. Food emulsions as delivery systems for flavor compounds: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3173–3187. [Google Scholar] [CrossRef] [PubMed]
- Meza, S.L.R.; Cañizares, L.; Dannenberg, B.; Peres, B.B.; Rodrigues, L.A.; Mardade, C.; de Leon, M.A.; Gaioso, C.A.; Egea, I.; de Oliveira, M. Sustainable rice bran protein: Composition, extraction, quality properties and applications. Trends Food Sci. Technol. 2024, 145, 104355. [Google Scholar] [CrossRef]
- Li, D.; Wang, R.C.; Ma, Y.; Yu, D.Y. Covalent modification of (+)-catechin to improve the physicochemical, rheological, and oxidative stability properties of rice bran protein emulsion. Int. J. Biol. Macromol. 2023, 249, 126003. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.R.; Wang, T.Y.; Sun, Y.; Cui, Y.J.; Yu, G.P.; Jiang, L.Z. Effects of high hydrostatic pressure pretreatment on the functional and structural properties of rice bran protein hydrolysates. Foods 2021, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.L.; Li, H.L.; Liu, Y.; Lin, Q.L.; Wu, X.J.; Wu, W. Effect of epigallocatechin-3-gallate modification on the structure and emulsion stability of rice bran protein in the presence of soybean protein isolate. Int. J. Biol. Macromol. 2024, 263, 130269. [Google Scholar] [CrossRef]
- Meinlschmidt, P.; Sussmann, D.; Schweiggert-Weisz, U.; Eisner, P. Enzymatic treatment of soy protein isolates: Effects on the potential allergenicity, technofunctionality, and sensory properties. Food Sci. Nutr. 2016, 4, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Phongthai, S.; D’Amico, S.; Schoenlechner, R.; Homthawornchoo, W.; Rawdkuen, S. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 2018, 240, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Shuai, X.X.; Gao, L.Z.; Geng, Q.; Li, T.; He, X.M.; Chen, J.; Liu, C.M.; Dai, T.T. Effects of moderate enzymatic hydrolysis on structure and functional properties of pea protein. Foods 2022, 11, 2368. [Google Scholar] [CrossRef]
- Zang, X.D.; Yue, C.H.; Liu, M.J.; Zheng, H.Y.; Xia, X.F.; Yu, G.P. Improvement of freeze-thaw stability of oil-in-water emulsions prepared with modified soy protein isolates. LWT-Food Sci. Technol. 2019, 102, 122–130. [Google Scholar] [CrossRef]
- Arteaga, V.G.; Guardia, M.A.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Effect of enzymatic hydrolysis on molecular weight distribution, techno-functional properties and sensory perception of pea protein isolates. Innov. Food Sci. Emerg. 2020, 65, 102449. [Google Scholar] [CrossRef]
- Balasubramaniam, V.M.; Martínez-Monteagudo, S.I.; Gupta, R. Principles and application of high pressure-based technologies in the food industry. Annu. Rev. Food Sci. Technol. 2015, 6, 435–462. [Google Scholar] [CrossRef]
- He, R.; He, H.Y.; Chao, D.F.; Ju, X.R.; Aluko, R. Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food Bioprocess Technol. 2014, 7, 1344–1353. [Google Scholar] [CrossRef]
- Wang, M.Y.; Chen, X.; Zou, Y.F.; Chen, H.Q.; Xue, S.W.; Qian, C.; Wang, P.; Xu, X.L.; Zhou, G.H. High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel. Int. J. Food Technol. 2017, 52, 724–732. [Google Scholar] [CrossRef]
- Herranz, B.; Romero, C.; Sánchez-Román, I.; López-Torres, M.; Viveros, A.; Arija, I.; Álvarez, M.D.; de Pascual-Teresa, S.; Chamorro, S. Enriching Eggs with Bioactive Compounds through the Inclusion of Grape Pomace in Laying Hens Diet: Effect on Internal and External Egg Quality Parameters. Foods 2024, 13, 1553. [Google Scholar] [CrossRef]
- Li, H.J.; Zhu, K.X.; Zhou, H.M.; Peng, W. Effects of high hydrostatic pressure on some functional and nutritional properties of soy protein isolate for infant formula. J. Agric. Food Chem. 2011, 59, 12028–12036. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.L.; Liu, J.Y.; Guo, S.T. Effects of succinylation on the structure and thermal aggregation of soy protein isolate. Food Chem. 2018, 245, 542–550. [Google Scholar] [CrossRef]
- Zang, X.D.; Yue, C.H.; Wang, Y.X.; Shao, M.L.; Yu, G.P. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2019, 85, 168–174. [Google Scholar] [CrossRef]
- Yan, S.Z.; Xu, J.W.; Zhang, S.; Li, Y. Effects of flexibility and surface hydrophobicity on emulsifying properties: Ultrasound-treated soybean protein isolate. LWT-Food Sci. Technol. 2021, 142, 110881. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, G.L.; Zhao, M.M.; Ren, J.Y.; Yang, B. Improvement of functional properties of peanut protein isolate by conjugation with dextran through maillard reaction. Food Chem. 2012, 131, 901–906. [Google Scholar] [CrossRef]
- Guan, H.N.; Diao, X.Q.; Jiang, F.; Han, J.C.; Kong, B.H. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chem. 2018, 245, 89–96. [Google Scholar] [CrossRef]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Gong, Y.H.; Li, Z.Y.; Guo, Y.F.; Yu, D.Y. Emulsion gels stabilized by soybean protein isolate and pectin: Effects of high intensity ultrasound on the gel properties, stability and β-carotene digestive characteristics. Ultrason. Sonochem. 2021, 79, 105756. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.Y.; Wang, S.R.; Zhang, L.J.; Sun, J.P.; Guo, T.H.; Yu, G.P.; Xia, X.F. Fabrication of bilayer emulsion by ultrasonic emulsification: Effects of chitosan on the interfacial stability of emulsion. Ultrason. Sonochem. 2023, 93, 106296. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, L.J.; Li, D.; Adhikari, B.; Shi, J. Effect of gum arabic on stability of oil- in-water emulsion stabilized by flaxseed and soybean protein. Carbohyd. Polym. 2011, 86, 343–351. [Google Scholar] [CrossRef]
- Wang, S.R.; Wang, T.Y.; Li, X.Y.; Cui, Y.J.; Sun, Y.; Yu, G.P.; Cheng, J.J. Fabrication of emulsions prepared by rice bran protein hydrolysate and ferulic acid covalent conjugate: Focus on ultrasonic emulsification. Ultrason. Sonochem. 2022, 88, 106064. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Wang, C.Y.; Wang, S.T.; Li, Y.Q.; Mo, H.Z.; He, J.X. Physicochemical properties and antioxidant activities of tree peony (Paeonia suffruticosa Andr.) seed protein hydrolysates obtained with different proteases. Food Chem. 2021, 345, 128765. [Google Scholar] [CrossRef] [PubMed]
- Avramenko, N.A.; Low, N.H.; Nickerson, M.T. The effects of limited enzymatic hydrolysis on the physicochemical and emulsifying properties of a lentil protein isolate. Food Res. Int. 2013, 51, 162–169. [Google Scholar] [CrossRef]
- Choi, S.M.; Ma, C.Y. Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy. Food Chem. 2007, 102, 150–160. [Google Scholar] [CrossRef]
- Wang, L.; Ding, Y.Y.; Zhang, X.X.; Li, Y.F.; Wang, R.; Luo, X.H.; Li, Y.N.; Li, J.; Chen, Z.X. Effect of electron beam on the functional properties and structure of defatted wheat germ proteins. J. Food Eng. 2017, 202, 9–17. [Google Scholar] [CrossRef]
- Shen, P.H.; Zhou, F.B.; Zhang, Y.H.; Yuan, D.; Zhao, Q.Z.; Zhao, M.M. Formation and characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis. Food Hydrocoll. 2020, 105, 105844. [Google Scholar] [CrossRef]
- Resendiz-Vazquez, J.A.; Ulloa, J.A.; Urías-Silvas, J.E.; Bautista-Rosales, P.U.; Ramírez-Ramírez, J.C.; Rosas-Ulloa, P.; González-Torres, L. Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrason. Sonochem. 2017, 37, 436–444. [Google Scholar] [CrossRef]
- Barac, M.; Cabrilo, S.; Stanojevic, S.; Pesic, M.; Pavlicevic, M.; Zlatkovic, B.; Jankovic, M. Functional properties of protein hydrolysates from pea (Pisum sativum L.) seeds. Int. J. Food Technol. 2012, 47, 1457–1467. [Google Scholar] [CrossRef]
- Gbogouri, G.A.; Linder, M.; Fanni, J.; Parmentier, M. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysis. J. Food Sci. 2004, 69, 615–622. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhou, F.B.; Zhao, M.M.; Lin, L.Z.; Ning, Z.X.; Sun, B.G. Soy peptide nanoparticles by ultrasound-induced self-assembly of large peptide aggregates and their role on emulsion stability. Food Hydrocoll. 2018, 74, 62–71. [Google Scholar] [CrossRef]
- Guan, H.N.; Diao, X.Q.; Liu, D.Y.; Han, J.C.; Kong, B.H.; Liu, D.Y.; Gao, C.Z.; Zhang, L.L. Effect of high-pressure processing enzymatic hydrolysates of soy protein isolate on the emulsifying and oxidative stability of myofibrillar protein-prepared oil-in-water emulsions. J. Sci. Food Agric. 2020, 100, 3910–3919. [Google Scholar] [CrossRef]
- Singh, T.P.; Siddiqi, R.A.; Sogi, D.S. Enzymatic modification of rice bran protein: Impact on structural, antioxidant and functional properties. LWT-Food Sci. Technol. 2021, 138, 110648. [Google Scholar] [CrossRef]
- Liu, H.T.; Han, G.; Zhang, H.; Liu, Q.; Kong, B.H. Improving the physical and oxidative stability of emulsions based on the interfacial electrostatic effects between porcine bone protein hydrolysates and porcine bone protein hydrolysate-rutin conjugates. Food Hydrocoll. 2019, 94, 418–427. [Google Scholar] [CrossRef]
- Liu, N.; Lin, P.; Zhang, K.; Yao, X.L.; Li, D.; Yang, L.Y.; Zhao, M.M. Combined effects of limited enzymatic hydrolysis and high hydrostatic pressure on the structural and emulsifying properties of rice proteins. Innov. Food Sci. Emerg. 2022, 77, 102975. [Google Scholar] [CrossRef]
- Ozturk, B.; McClements, D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Malhotra, A.; Coupland, J.N. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocoll. 2004, 18, 101–108. [Google Scholar] [CrossRef]
- Cromwell, M.E.M.; Hilario, E.; Jacobson, F. Protein aggregation and bioprocessing. AAPS J. 2006, 8, 572–579. [Google Scholar] [CrossRef] [PubMed]
- İbanoğlu, E.; Karataş, Ş. High pressure effect on foaming behaviour of whey protein isolate. J. Food Eng. 2001, 47, 31–36. [Google Scholar] [CrossRef]
- Huang, Z.L.; Liao, L.K.; McClements, D.J.; Li, J.H.; Li, R.Y.; Zou, Y.; Li, M.; Zhou, W. Utilizing protein-polyphenol molecular interactions to prepare moringa seed residue protein/tannic acid Pickering stabilizers. LWT-Food Sci. Technol. 2022, 154, 112814. [Google Scholar] [CrossRef]
Samples | Percentage Area of Peak (%) Corresponding to Retention Time/Molecular-Weight Distribution (min, kDa) | ||||
---|---|---|---|---|---|
<10 min | 10–11 min | 11–12 min | 12–13 min | >13 min | |
>33 kDa | 22–33 kDa | 18–22 kDa | 16–18 kDa | <14 kDa | |
DH0 | 0.75 ± 0.01 e | 41.05 ± 0.10 a | 13.59 ± 0.02 d | 25.85 ± 0.11 a | 18.76 ± 0.12 b |
DH2 | 6.51 ± 0.03 d | 40.31 ± 0.05 b | 22.74 ± 0.06 c | 11.69 ± 0.08 b | 18.75 ± 0.07 b |
DH4 | 9.89 ± 0.07 c | 36.41 ± 0.13 c | 22.72 ± 0.05 c | 9.92 ± 0.04 d | 21.06 ± 0.05 a |
DH8 | 16.16 ± 0.11 a | 33.69 ± 0.07 d | 23.68 ± 0.09 b | 10.18 ± 0.08 c | 16.29 ± 0.09 d |
DH12 | 13.26 ± 0.06 b | 30.12 ± 0.02 e | 27.04 ± 0.05 a | 11.71 ± 0.03 b | 17.87 ± 0.02 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Hua, Z.; Wang, T.; Yu, G.; Sun, Y. Tailoring Structural, Emulsifying, and Interfacial Properties of Rice Bran Protein Through Limited Enzymatic Hydrolysis After High-Hydrostatic-Pressure Pretreatment. Foods 2025, 14, 292. https://doi.org/10.3390/foods14020292
Wang S, Hua Z, Wang T, Yu G, Sun Y. Tailoring Structural, Emulsifying, and Interfacial Properties of Rice Bran Protein Through Limited Enzymatic Hydrolysis After High-Hydrostatic-Pressure Pretreatment. Foods. 2025; 14(2):292. https://doi.org/10.3390/foods14020292
Chicago/Turabian StyleWang, Shirang, Zhen Hua, Tengyu Wang, Guoping Yu, and Yu Sun. 2025. "Tailoring Structural, Emulsifying, and Interfacial Properties of Rice Bran Protein Through Limited Enzymatic Hydrolysis After High-Hydrostatic-Pressure Pretreatment" Foods 14, no. 2: 292. https://doi.org/10.3390/foods14020292
APA StyleWang, S., Hua, Z., Wang, T., Yu, G., & Sun, Y. (2025). Tailoring Structural, Emulsifying, and Interfacial Properties of Rice Bran Protein Through Limited Enzymatic Hydrolysis After High-Hydrostatic-Pressure Pretreatment. Foods, 14(2), 292. https://doi.org/10.3390/foods14020292