Construction of Pickering Double Emulsions Based on Xanthan Gum/Lysozyme Nanoparticles: Structure, Stability, and Co-Encapsulation of Epigallocatechin Gallate and β-Carotene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of XG/Ly NPs
2.3. Preparation of Pickering Double Emulsions (PDEs)
2.4. Microstructure of PDEs
2.5. Particle Size and Zeta Potential of PDEs
2.6. Physical Stability of PDEs
2.7. Rheological Behaviors of PDEs
2.8. Encapsulation Efficiency (EE) and Loading Efficiency (LE) of PDEs
2.9. Photostability of EGCG and β-Carotene
2.10. Digestion Behavior of PDEs
2.11. Statistical Analysis
3. Results and Discussion
3.1. Microstructure, Particle Size, and Zeta Potential
3.2. Physical Stability Analysis
3.3. Rheological Behaviors Analysis
3.4. Cryo-SEM Observations
3.5. Encapsulation of EGCG and β-Carotene
3.6. Photostability Analysis of PDEs
3.7. In Vitro Simulated Digestion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muschiolik, G.; Dickinson, E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [PubMed]
- Elaine, E.; Bhandari, B.; Tan, C.P.; Nyam, K.L. Recent Advances in the Formation, Stability, and Emerging Food Application of Water-in-Oil-in-Water Double Emulsion Carriers. Food Bioprocess Technol. 2024, 17, 3440–3460. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X.; Wu, X.; Ma, D.; Huang, Y.; Zhao, Q.; Zhang, S.; Li, Y. Co-Delivery of Vitamin C and β-Carotene in W/O/W Emulsions Stabilized by Modified Aggregated Insoluble Soybean Protein Hydrolysate-Xanthan Gum Complexes. Int. J. Biol. Macromol. 2024, 261, 129855. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, H.; Su, W.; Song, Y.; Zaky, A.A.; Abd El-Aty, A.M.; Tan, M. Co-Delivery of Hydrophobic Astaxanthin and Hydrophilic Phycocyanin by a PH-Sensitive Water-in-Oil-in-Water Double Emulsion-Filled Gellan Gum Hydrogel. Food Hydrocoll. 2022, 131, 107810. [Google Scholar] [CrossRef]
- Chen, X.; McClements, D.J.; Wang, J.; Zou, L.; Deng, S.; Liu, W.; Yan, C.; Zhu, Y.; Cheng, C.; Liu, C. Coencapsulation of (−)-Epigallocatechin-3-Gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. J. Agric. Food Chem. 2018, 66, 3691–3699. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Fang, Y.; Liu, X.; Cong, X.; Luo, Y.; Zhou, J.; Din, Z.; Cheng, S.; Cai, J. Transformation of W/O/W Emulsions and O/W/O Emulsions for Co-Loading Selenium-Enriched Peptide and Vitamin E: Design and Characteristics. J. Food Eng. 2024, 360, 111702. [Google Scholar] [CrossRef]
- Leister, N.; Götz, V.; Jan Bachmann, S.; Nachtigall, S.; Hosseinpour, S.; Peukert, W.; Karbstein, H. A Comprehensive Methodology to Study Double Emulsion Stability. J. Colloid Interface Sci. 2023, 630, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Kanouni, M.; Rosano, H.L.; Naouli, N. Preparation of a Stable Double Emulsion (W1/O/W2): Role of the Interfacial Films on the Stability of the System. Adv. Colloid Interface Sci. 2002, 99, 229–254. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, Y.; Bolzinger, M.-A. Emulsions Stabilized with Solid Nanoparticles: Pickering Emulsions. Colloids Surf. A 2013, 439, 23–34. [Google Scholar] [CrossRef]
- Rehman, A.; Liang, Q.; Karim, A.; Assadpour, E.; Jafari, S.M.; Rasheed, H.A.; Virk, M.S.; Qayyum, A.; Suleria, H.A.R.; Ren, X. Pickering High Internal Phase Emulsions Stabilized by Biopolymeric Particles: From Production to High-Performance Applications. Food Hydrocoll. 2024, 150, 109751. [Google Scholar] [CrossRef]
- Ribeiro, E.F.; Morell, P.; Nicoletti, V.R.; Quiles, A.; Hernando, I. Protein- and Polysaccharide-Based Particles Used for Pickering Emulsion Stabilisation. Food Hydrocoll. 2021, 119, 106839. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q.; Rao, Z.; Lei, X.; Zhao, J.; Lei, L.; Ming, J. The Linear/Nonlinear Rheological Behaviors of Pickering Emulsion Stabilized by Zein and Xanthan Gum: Effect of Interfacial Assembly Strategies. Food Hydrocoll. 2023, 145, 109116. [Google Scholar] [CrossRef]
- Du, L.; Ru, Y.; Weng, H.; Zhang, Y.; Chen, J.; Xiao, A.; Xiao, Q. Agar-Gelatin Maillard Conjugates Used for Pickering Emulsion Stabilization. Carbohydr. Polym. 2024, 340, 122293. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Ma, X.; Sun, J.; Bai, W. Fabrication and Characterization of Anthocyanin-Loaded Double Pickering Emulsions Stabilized by β-Cyclodextrin. Int. J. Pharm. 2024, 655, 124003. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rong, X.; Zhang, D.; Yang, Y.; Li, B. Fabrication of Natural W1/O/W2 Double Emulsions Stabilized with Gliadin Colloid Particles and Soybean Lecithin. Food Hydrocoll. 2023, 144, 108978. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, S.; Zhao, C.; Liu, M.; Zhang, Z.; Xu, W.; Luo, D.; Shah, B.R. Stability, Microstructural and Rheological Properties of Pickering Emulsion Stabilized by Xanthan Gum/Lysozyme Nanoparticles Coupled with Xanthan Gum. Int. J. Biol. Macromol. 2020, 165, 2387–2394. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jin, W.; Li, Z.; Liang, H.; Wang, Y.; Shah, B.R.; Li, Y.; Li, B. Synthesis and Characterization of Nanoparticles Based on Negatively Charged Xanthan Gum and Lysozyme. Food Res. Int. 2015, 71, 83–90. [Google Scholar] [CrossRef]
- Xu, W.; Sun, H.; Jia, Y.; Jia, Y.; Ning, Y.; Wang, Y.; Jiang, L.; Luo, D.; Shah, B.R. Pickering Emulsions Synergistic Stabilized with Konjac Glucomannan and Xanthan Gum/Lysozyme Nanoparticles: Structure, Protection and Gastrointestinal Digestion. Carbohydr. Polym. 2023, 305, 120507. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Ning, Y.; Wang, M.; Zhang, S.; Sun, H.; Yin, Y.; Li, N.; Li, P.; Luo, D. Construction of Astaxanthin Loaded Pickering Emulsions Gel Stabilized by Xanthan Gum/Lysozyme Nanoparticles with Konjac Glucomannan from Structure, Protection and Gastrointestinal Digestion Perspective. Int. J. Biol. Macromol. 2023, 252, 126421. [Google Scholar] [CrossRef]
- Xu, W.; Yin, Y.; Yue, M.; Sun, H.; Kang, M.; Luo, D.; Shah, B.R.; Ge, Y. Construction of Highly Stable Pickering Emulsion Systems Based on Konjac Glucomannan and Xanthan Gum/Lysozyme Nanoparticles under Pasteurization. Food Chem. X 2024, 23, 101633. [Google Scholar] [CrossRef]
- Lin, X.; Li, S.; Yin, J.; Chang, F.; Wang, C.; He, X.; Huang, Q.; Zhang, B. Anthocyanin-Loaded Double Pickering Emulsion Stabilized by Octenylsuccinate Quinoa Starch: Preparation, Stability and in Vitro Gastrointestinal Digestion. Int. J. Biol. Macromol. 2020, 152, 1233–1241. [Google Scholar] [CrossRef]
- Huang, X.; Tu, R.; Song, H.; Dong, K.; Geng, F.; Chen, L.; Huang, Q.; Wu, Y. Gelatin-EGCG-High Methoxyl Pectin Ternary Complex Stabilized W1/O/W2 Double Emulsions Loaded with Vitamin C: Formation, Structure, Stability, in Vitro Gastrointestinal Digestion. Int. J. Biol. Macromol. 2022, 216, 891–905. [Google Scholar] [CrossRef]
- Tian, H.; Xiang, D.; Li, C. Tea Polyphenols Encapsulated in W/O/W Emulsions with Xanthan Gum–Locust Bean Gum Mixture: Evaluation of Their Stability and Protection. Int. J. Biol. Macromol. 2021, 175, 40–48. [Google Scholar] [CrossRef]
- Han, G.; Duan, X.; Jiang, B.; Li, Y.; Li, B.; Yang, J.; Pan, S.; Liu, F. Emulsifying Properties, in Vitro Digestive Characteristics, and β-Carotene Bioaccessibility of Mandarin Peel Pectin Emulsions Prepared with Different Carrier Oil Phases. Int. J. Biol. Macromol. 2023, 242, 124961. [Google Scholar] [CrossRef]
- Zhuang, H.; Li, X.; Wu, S.; Wang, B.; Yan, H. Fabrication of Grape Seed Proanthocyanidin-Loaded W/O/W Emulsion Gels Stabilized by Polyglycerol Polyricinoleate and Whey Protein Isolate with Konjac Glucomannan: Structure, Stability, and in Vitro Digestion. Food Chem. 2023, 418, 135975. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, C.; Liu, X.; Mackie, A.; Zhang, M.; Dai, L.; Liu, J.; Mao, L.; Yuan, F.; Gao, Y. Co-Encapsulation of Curcumin and β-Carotene in Pickering Emulsions Stabilized by Complex Nanoparticles: Effects of Microfluidization and Thermal Treatment. Food Hydrocoll. 2022, 122, 107064. [Google Scholar] [CrossRef]
- Farooq, S.; Ijaz Ahmad, M.; Zhang, Y.; Chen, M.; Zhang, H. Fabrication, Characterization and in Vitro Digestion of Camellia Oil Body Emulsion Gels Cross-Linked by Polyphenols. Food Chem. 2022, 394, 133469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.-Q.; Li, L.; Song, H.-L.; Wu, H.-T.; Zhu, B.-W. Fabrication and Characterization of Salidroside W/O/W Emulsion with Sodium Alginate. Food Chem. X 2024, 22, 101260. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Wu, X.; Gao, Y.; Teng, F.; Li, Y. Co-Delivery System of Vitamin B12 and Vitamin E Using a Binary W/O/W Emulsion Based on Soybean Isolate Protein–Xanthan Gum/Carrageenan: Emulsification Properties, Rheological Properties, Structure, Stability, and Digestive Characteristics. Foods 2023, 12, 4361. [Google Scholar] [CrossRef]
- An, Z.; Liu, Z.; Mo, H.; Hu, L.; Li, H.; Xu, D.; Chitrakar, B. Preparation of Pickering Emulsion Gel Stabilized by Tea Residue Protein/Xanthan Gum Particles and Its Application in 3D Printing. J. Food Eng. 2023, 343, 111378. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, Z.; Li, W.; Sun, X.; Yuan, L.; Yang, X. W/O/W Pickering Emulsions Stabilized by Complex Modified Phycocyanin. J. Sci. Food Agric. 2024, 104, 9001–9013. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.-Y.; Wang, Z.-M.; Meng, H.-C.; Lin, J.-W.; Guo, X.-M.; Zhang, T.; Chen, H.-L.; Lei, C.-Y.; Yu, S.-J. Robust W/O/W Emulsion Stabilized by Genipin-Cross-Linked Sugar Beet Pectin-Bovine Serum Albumin Nanoparticles: Co-Encapsulation of Betanin and Curcumin. J. Agric. Food Chem. 2021, 69, 1318–1328. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, R.; Fathi, M.; Ghoddusi, H.B. Pickering Emulsions Stabilized by Cellulose Nanocrystals Extracted from Hazelnut Shells: Production and Stability under Different Harsh Conditions. Int. J. Biol. Macromol. 2024, 258, 128982. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Zhu, J.; Jiang, Y.; Shao, P.; Li, B.; Huang, Q. Gelatin-Based Nanocomplex-Stabilized Pickering Emulsions: Regulating Droplet Size and Wettability through Assembly with Glucomannan. J. Agric. Food Chem. 2017, 65, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zhu, P.; Hui, G.; Shen, Y.; Yong, Z.; Xie, Q.; Wang, M. Mechanism of Synergistic Stabilization of Emulsions by Amorphous Taro Starch and Protein and Emulsion Stability. Food Chem. 2023, 424, 136342. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Chen, H.; Gao, P.; Xu, Y.; Xia, W.; Liu, S.-Q. Interfacial Structures and Processing Stability of Surimi Particles-Konjac Glucomannan Complexes Stabilized Pickering Emulsions via One-Step and Layer-by-Layer. Food Hydrocoll. 2024, 147, 109349. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, Z.; Cheng, L.; Li, C.; Li, Z.; Hong, Y. Stabilization of Pickering Emulsions by Oxidized Starch/Zein Nanoparticle Complexes. Food Biosci. 2024, 59, 103928. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, C.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Wang, J.; Jin, Z. Preparation of High Internal Phase Pickering Emulsion Gels Stabilized by Glycyrrhizic Acid-Zein Composite Nanoparticles: Gelation Mechanism and 3D Printing Performance. Food Hydrocoll. 2023, 135, 108128. [Google Scholar] [CrossRef]
- Xu, W.; Zheng, S.; Sun, H.; Ning, Y.; Jia, Y.; Luo, D.; Li, Y.; Shah, B.R. Rheological Behavior and Microstructure of Pickering Emulsions Based on Different Concentrations of Gliadin/Sodium Caseinate Nanoparticles. Eur. Food Res. Technol. 2021, 247, 2621–2633. [Google Scholar] [CrossRef]
- Liang, Z.; Chu, H.; Hou, Z.; Wang, C.; Zhang, G.; Liu, L.; Ma, X.; Li, C.; He, J. W/O/W Emulsions Stabilized with Whey Protein Concentrate and Pectin: Effects on Storage, Pasteurization, and Gastrointestinal Viability of Lacticaseibacillus rhamnosus. Int. J. Biol. Macromol. 2023, 232, 123477. [Google Scholar] [CrossRef] [PubMed]
- Aditya, N.P.; Aditya, S.; Yang, H.; Kim, H.W.; Park, S.O.; Ko, S. Co-Delivery of Hydrophobic Curcumin and Hydrophilic Catechin by a Water-in-Oil-in-Water Double Emulsion. Food Chem. 2015, 173, 7–13. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, M.; Liao, Y.; Kang, M.; Qi, B.; Li, Y. Pickering Emulsions Stabilized by Reassembled Oleosome Protein Nanoparticles for Co-Encapsulating Hydrophobic Nutrients. Food Hydrocoll. 2023, 138, 108445. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Jiang, H.; Zhao, B.; Yang, C.; Li, Y. Biocompatible Oil-in-Water-in-Oil Double Emulsion Stabilized Synergistically by Phytosterol/Chitosan Complex Particle and Gelatin. Food Hydrocoll. 2024, 147, 109419. [Google Scholar] [CrossRef]
- Sarkar, A.; Zhang, S.; Holmes, M.; Ettelaie, R. Colloidal Aspects of Digestion of Pickering Emulsions: Experiments and Theoretical Models of Lipid Digestion Kinetics. Adv. Colloid Interface Sci. 2019, 263, 195–211. [Google Scholar] [CrossRef]
- Paredes-Toledo, J.; Herrera, J.; Morales, J.; Robert, P.; Oyarzun-Ampuero, F.; Giménez, B. Bioaccessibility of Chlorogenic Acid and Curcumin Co-Encapsulated in Double Emulsions with the Inner Interface Stabilized by Functionalized Silica Nanoparticles. Food Chem. 2024, 445, 138828. [Google Scholar] [CrossRef]
- Chen, H.; Lu, Y.; Yuan, F.; Gao, Y.; Mao, L. Effect of Interfacial Compositions on the Physical Properties of Alginate-Based Emulsion Gels and Chemical Stability of Co-Encapsulated Bioactives. Food Hydrocoll. 2021, 111, 106389. [Google Scholar] [CrossRef]
Samples | Rate Constant (k1) | t1/2 (h) | R2 |
---|---|---|---|
Free EGCG | 0.0767 | 9.05 | 0.990 |
EGCG | 0.0455 | 15.23 | 0.990 |
EGCG and β-carotene | 0.0335 | 20.71 | 0.985 |
Free β-carotene | 0.111 | 6.22 | 0.984 |
β-carotene | 0.0351 | 19.74 | 0.994 |
β-carotene and EGCG | 0.0264 | 26.25 | 0.995 |
Samples | k2 (min−1) | R2 |
---|---|---|
EGCG | 0.0209 | 0.990 |
β-carotene | 0.0192 | 0.996 |
EGCG and β-carotene | 0.0233 | 0.987 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Luo, D.; Li, L.; Li, X.; Kang, M.; Shah, B.R.; Wei, X.; Xu, W. Construction of Pickering Double Emulsions Based on Xanthan Gum/Lysozyme Nanoparticles: Structure, Stability, and Co-Encapsulation of Epigallocatechin Gallate and β-Carotene. Foods 2025, 14, 98. https://doi.org/10.3390/foods14010098
Yin Y, Luo D, Li L, Li X, Kang M, Shah BR, Wei X, Xu W. Construction of Pickering Double Emulsions Based on Xanthan Gum/Lysozyme Nanoparticles: Structure, Stability, and Co-Encapsulation of Epigallocatechin Gallate and β-Carotene. Foods. 2025; 14(1):98. https://doi.org/10.3390/foods14010098
Chicago/Turabian StyleYin, Yongpeng, Denglin Luo, Lala Li, Xingguo Li, Mengyao Kang, Bakht Ramin Shah, Xianling Wei, and Wei Xu. 2025. "Construction of Pickering Double Emulsions Based on Xanthan Gum/Lysozyme Nanoparticles: Structure, Stability, and Co-Encapsulation of Epigallocatechin Gallate and β-Carotene" Foods 14, no. 1: 98. https://doi.org/10.3390/foods14010098
APA StyleYin, Y., Luo, D., Li, L., Li, X., Kang, M., Shah, B. R., Wei, X., & Xu, W. (2025). Construction of Pickering Double Emulsions Based on Xanthan Gum/Lysozyme Nanoparticles: Structure, Stability, and Co-Encapsulation of Epigallocatechin Gallate and β-Carotene. Foods, 14(1), 98. https://doi.org/10.3390/foods14010098