Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field-Measured Data
2.3. Remote Sensing Data
2.4. Biomass Estimation from Remote Sensing
2.4.1. Feature Derivation
2.4.2. Machine Learning Method
2.4.3. Precision Evaluation
2.5. AGB Mapping and Spatio-Temporal Characteristic Analysis
3. Results
3.1. The Importance Rank of Variables
3.2. Accuracy Assessment
3.3. Bitemporal Distribution and Change of Aboveground Biomass
3.4. Spatiotemporal Biomass Change in the Three Regions
3.4.1. AGB Change in Wuyi County
3.4.2. AGB Change in Xianju County
3.4.3. AGB Change in Dinghai District
3.4.4. Comparison of AGB/Change in Three Regions
4. Discussion
4.1. Comparison of Variable Importance
4.2. The Effect of Forest Policy on Biomass Spatiotemporal Variations
4.3. The Terrain Impact on Biomass Distribution and Change
4.4. Future Works
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef]
- Shuman, J.K.; Shugart, H.H.; Krankina, O.N. Assessment of carbon stores in tree biomass for two management scenarios in Russia. Environ. Res. Lett. 2013, 8, 045019. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2014, 1–43. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Yang, Z. Using Landsat-derived disturbance and recovery history and lidar to map forest biomass dynamics. Remote Sens. Environ. 2014, 151, 124–137. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef]
- Wang, X.; Shao, G.; Chen, H.; Lewis, B.J.; Qi, G.; Yu, D.; Zhou, L.; Dai, L. An Application of Remote Sensing Data in Mapping Landscape-Level Forest Biomass for Monitoring the Effectiveness of Forest Policies in Northeastern China. Environ. Manag. 2013, 52, 612–620. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Wu, C.; Shen, H.; Wang, K.; Shen, A.; Deng, J.; Gan, M. Landsat Imagery-Based Above Ground Biomass Estimation and Change Investigation Related to Human Activities. Sustainability 2016, 8, 159. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Baret, F.; Buis, S. Estimating Canopy Characteristics from Remote Sensing Observations: Review of Methods and Associated Problems. In Advances in Land Remote Sensing; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Wu, C.; Tao, H.; Zhai, M.; Lin, Y.; Wang, K.; Deng, J.; Shen, A.; Gan, M.; Li, J.; Yang, H. Using nonparametric modeling approaches and remote sensing imagery to estimate ecological welfare forest biomass. J. For. Res. 2017, 151–161. [Google Scholar] [CrossRef]
- Jachowski, N.R.A.; Quak, M.S.Y.; Friess, D.A.; Duangnamon, D.; Webb, E.L.; Ziegler, A.D. Mangrove biomass estimation in Southwest Thailand using machine learning. Appl. Geogr. 2013, 45, 311–321. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.E.; Hartig, F.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Stratified aboveground forest biomass estimation by remote sensing data. Int. J. Appl. Earth Obs. 2015, 38, 229–241. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Beier, C. Machine learning approaches for forest classification and change analysis using multi-temporal landsat tm images over huntington wildlife forest. Mapp. Sci. Remote Sens. 2013, 50, 361–384. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O.; Elhadi, A.; Ismail, R. Intra-and-Inter Species Biomass Prediction in a Plantation Forest: Testing the Utility of High Spatial Resolution Spaceborne Multispectral RapidEye Sensor and Advanced Machine Learning Algorithms. Sensors 2014, 14, 15348–15370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Li, Z.; Zhang, X.; Chen, E.; Bai, L.; Tian, X.; He, Q.; Feng, Q.; Li, W. Optimal Support Vector Machines for Forest Above-ground Biomass Estimation from Multisource Remote Sensing Data. In Proceedings of the IEEE International Symposium on Geoscience and Remote Sensing IGARSS, Munich, Germany, 22–27 July 2012; pp. 6388–6391. [Google Scholar]
- Wu, C.; Shen, H.; Shen, A.; Deng, J.; Gan, M.; Zhu, J.; Xu, H.; Wang, K. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery. J. Appl. Remote Sens. 2016, 10, 035010. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sattler, D.; Murray, L.T.; Kirchner, A.; Lindner, A. Influence of soil and topography on aboveground biomass accumulation and carbon stocks of afforested pastures in South East Brazil. Ecol. Eng. 2014, 73, 126–131. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D.; Yoon, T.K.; Salim, K.A.; Han, S.; Yun, H.M.; Yoon, M.; Kim, E.; Lee, W.K.; Davies, S.J. Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei. J. Ecol. Environ. 2015, 38, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Xu, J.; Wang, J.; Zhang, F.; Ji, B. Correlation between forest carbon distribution and terrain elements of altitude and slope. J. Zhejiang A F Univ. 2013, 30, 330–335. [Google Scholar]
- Yuan, W.; Jiang, B.; Ge, Y.; Zhu, J.; Shen, A. Study on Biomass Model of Key Ecological Forest in Zhejiang Province. J. Zhejiang For. Sci. Technol. 2009, 29, 1–5. [Google Scholar]
- U.S. Geological Survey. Available online: http://glovis.usgs.gov (accessed on 20 July 2016).
- Nemani, R.; Pierce, L.; Running, S.; Band, L. Forest ecosystem processes at the watershed scale: Sensitivity to remotely-sensed Leaf Area Index estimates. Int. J. Remote Sens. 1993, 14, 2519–2534. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, S.; Hogg, E.H.; Lieffers, V.; Qin, Y.; He, F. Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences 2014, 11, 2793–2808. [Google Scholar] [CrossRef] [Green Version]
- Mutanga, O.; Adam, E.; Cho, M.A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Löw, F.; Knöfel, P.; Conrad, C. Analysis of uncertainty in multi-temporal object-based classification. ISPRS J. Photogramm. Remote Sens. 2015, 105, 91–106. [Google Scholar] [CrossRef]
- Gessner, U.; Machwitz, M.; Conrad, C.; Dech, S. Estimating the fractional cover of growth forms and bare surface in savannas. A multi-resolution approach based on regression tree ensembles. Remote Sens. Environ. 2013, 129, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Pan, Y. Spatiotemporal Dynamics of Island Urbanization in Response to Integrated Ocean and Coastal Development. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Zhang, Q.; Gao, W.; Su, S.; Weng, M.; Cai, Z. Biophysical and socioeconomic determinants of tea expansion: Apportioning their relative importance for sustainable land use policy. Land Use Policy Int. J. Cover. All Asp. Land Use 2017, 68, 438–447. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J.; Ryu, S.-R. Estimating aboveground biomass using landsat 7 etm+ data across a managed landscape in northern wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Sadeghi, Y.; St-Onge, B.; Leblon, B.; Prieur, J.-F.; Simard, M. Mapping boreal forest biomass from a srtm and tandem-x based on canopy height model and landsat spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 202–213. [Google Scholar] [CrossRef]
- Nguyen, T.; Jones, S.; Soto-Berelov, M.; Haywood, A.; Hislop, S. A comparison of imputation approaches for estimating forest biomass using landsat time-series and inventory data. Remote Sens. 2018, 10, 1825. [Google Scholar] [CrossRef]
- Hu, X. Study on the Ecological & Social Benefits of Non-Commercial Forest in Wuyi County. Master’s Thesis, Zhejiang A & Fu University, Hangzhou, China, 2011. [Google Scholar]
- Xu, C. First exploration of public welfare forest construction and management in Dinghai Distinct. China For. Ind. 2016, 274. [Google Scholar]
- Zhang, J.; Gao, H.; Ying, B.; Wang, J.; Yuan, W.; Zhu, J.; Yi, L.; Jiang, B. The biomass dynamic analysis of public waifare forest in Xianju county of Zhejiang province. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2011, 35, 147–150. [Google Scholar]
- Fan, Y.; Zhou, G.; Shi, Y.; Du, H.; Zhou, Y.; Xu, X. Effects of terrain on stand structure and vegetation carbon storage of phyllostachys edulis forest. Sci. Silvae Sin. 2013, 49, 177–182. [Google Scholar]
- Li, P.; Wei, X.; Tang, M. Forest site classification based on nfi and dem in zhejiang province. J. Southwest For. Univ. 2018, 38, 137–144. [Google Scholar]
- Flores, A.N.; Ivanov, V.Y.; Entekhabi, D.; Bras, R.L. Impact of hillslope-scale organization of topography, soil moisture, soil temperature, and vegetation on modeling surface microwave radiation emission. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2557–2571. [Google Scholar] [CrossRef]
- Ai, Z.; He, L.; Xin, Q.; Yang, T.; Liu, G.; Xue, S. Slope aspect affects the non-structural carbohydrates and c:N:P stoichiometry of artemisia sacrorum on the loess plateau in china. Catena 2017, 152, 9–17. [Google Scholar] [CrossRef]
- Laurin, G.V.; Puletti, N.; Chen, Q.; Corona, P.; Papale, D.; Valentini, R. Above ground biomass and tree species richness estimation with airborne lidar in tropical ghana forests. Int. J. Appl. Earth Obs. Geéoinf. 2016, 52, 371–379. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm. ISPRS J. Photogramm. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Historical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS J. Photogramm. 2014, 93, 14–28. [Google Scholar] [CrossRef] [Green Version]
Statistic | Wuyi County | Xianju County | Dinghai District | |||
---|---|---|---|---|---|---|
2010 | 2015 | 2010 | 2015 | 2010 | 2015 | |
Number of plots | 130 | 130 | 49 | 49 | 43 | 43 |
Mean | 91.22 | 99.37 | 79.07 | 93.78 | 87.96 | 112.81 |
Max | 188.29 | 212.01 | 131.92 | 144.51 | 184.64 | 299.81 |
Min | 20.32 | 16.85 | 7.71 | 13.28 | 3.38 | 5.38 |
SD | 38.61 | 41.68 | 27.90 | 31.51 | 50.74 | 66.74 |
Study Area | Path/Row | Sensor | Imagery Acquisition Time |
---|---|---|---|
Dinghai District | 118/39 | TM5 OLI | 17 July 2009 03 August 2015 |
Wuyi County | 119/40 | TM5 OLI | 24 May 2010 13 October 2015 |
Xianju County | 118/40 | TM5 OLI | 28 July 2007 20 July 2016 |
Regions | Area (km2) | Elevation (m) | Slope ° | Aspect ° | AGB (Mg/ha) | Increase (Mg/ha) | Increase Rate (%) | |
---|---|---|---|---|---|---|---|---|
2010 | 2015 | |||||||
Wuyi County | 1583.13 | 383.83 | 16.01 | 177.23 | 91.18 | 106.23 | 15.05 | 16.51 |
Xianju County | 1999.78 | 408.71 | 19.18 | 179.83 | 79.55 | 88.10 | 8.55 | 10.75 |
Dinghai District | 534.40 | 62.97 | 10.87 | 169.44 | 70.59 | 83.23 | 12.64 | 17.91 |
Year | Elevation | Slope | Aspect | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | p-Value | Sig. | R2 | p-Value | Sig. | R2 | p-Value | Sig. | |
2010 | 0.28 | 0.1817 | -- | 0.69 | 0.0393 | * | 0.35 | 0.1243 | -- |
2015 | 0.00 | 0.1470 | -- | 0.45 | 0.1470 | -- | 0.16 | 0.3330 | -- |
2010–2015 | 0.77 | 0.0044 | ** | 0.85 | 0.0085 | ** | 0.20 | 0.2658 | -- |
Year | Elevation | Slope | Aspect | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | p-Value | Sig. | R2 | p-Value | Sig. | R2 | p-Value | Sig. | |
2010 | 0.69 | 0.0410 | * | 0.68 | 0.0444 | * | 0.56 | 0.0324 | * |
2015 | 0.92 | 0.0026 | ** | 0.79 | 0.0171 | * | 0.31 | 0.1493 | -- |
2010–2015 | 0.94 | 0.0016 | ** | 0.86 | 0.0077 | ** | 0.65 | 0.0152 | * |
Year | Elevation | Slope | Aspect | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | p-Value | Sig. | R2 | p-Value | Sig. | R2 | p-Value | Sig. | |
2010 | 0.22 | 0.2385 | -- | 0.90 | 0.0041 | ** | 0.05 | 0.5934 | -- |
2015 | 0.69 | 0.0109 | * | 0.49 | 0.1217 | -- | 0.05 | 0.5822 | -- |
2010–2015 | 0.45 | 0.0693 | -- | 0.78 | 0.0202 | * | 0.01 | 0.7868 | -- |
Year | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
---|---|---|---|---|---|---|
Total Afforested Area (km2) | 15.21 | 40.47 | 43.92 | 42.36 | 39.40 | 32.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, A.; Wu, C.; Jiang, B.; Deng, J.; Yuan, W.; Wang, K.; He, S.; Zhu, E.; Lin, Y.; Wu, C. Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions. Forests 2018, 9, 778. https://doi.org/10.3390/f9120778
Shen A, Wu C, Jiang B, Deng J, Yuan W, Wang K, He S, Zhu E, Lin Y, Wu C. Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions. Forests. 2018; 9(12):778. https://doi.org/10.3390/f9120778
Chicago/Turabian StyleShen, Aihua, Chaofan Wu, Bo Jiang, Jinsong Deng, Weigao Yuan, Ke Wang, Shan He, Enyan Zhu, Yue Lin, and Chuping Wu. 2018. "Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions" Forests 9, no. 12: 778. https://doi.org/10.3390/f9120778
APA StyleShen, A., Wu, C., Jiang, B., Deng, J., Yuan, W., Wang, K., He, S., Zhu, E., Lin, Y., & Wu, C. (2018). Spatiotemporal Variations of Aboveground Biomass under Different Terrain Conditions. Forests, 9(12), 778. https://doi.org/10.3390/f9120778