Synergizing Wood Science and Interpretable Artificial Intelligence: Detection and Classification of Wood Species Through Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hyperspectral Imaging System Spectra Acquisition
2.2.1. Hyperspectral Imaging System
2.2.2. Spectra Extraction and Data Split
2.3. Spectral Preprocessing
2.4. Feature Wavelength Selection
2.5. Modeling Algorithm and Model Evaluation
2.5.1. Modeling Algorithm
2.5.2. Model Evaluation
2.6. Model Interpretation
2.7. Computational Environment
3. Results
3.1. Spectral Analysis
3.2. Principal Component Analysis
3.3. Validation of Species Classification Models
3.3.1. Full Wavelength Modeling
3.3.2. Feature Extraction
3.3.3. Feature Wavelength Modeling
3.4. Explanation of Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shrestha, S.; Kognou, A.L.M.; Zhang, J.; Qin, W. Different Facets of Lignocellulosic Biomass Including Pectin and Its Perspectives. Waste Biomass Valoriz. 2021, 12, 4805–4823. [Google Scholar] [CrossRef]
- Zhou, Z.; Rahimi, S.; Avramidis, S. On-Line Species Identification of Green Hem-Fir Timber Mix Based on near Infrared Spectroscopy and Chemometrics. Eur. J. Wood Wood Prod. 2020, 78, 151–160. [Google Scholar] [CrossRef]
- Hu, J.L.; Ci, X.Q.; Liu, Z.F.; Dormontt, E.E.; Conran, J.G.; Lowe, A.J.; Li, J. Assessing Candidate DNA Barcodes for Chinese and Internationally Traded Timber Species. Mol. Ecol. Resour. 2022, 22, 1478–1492. [Google Scholar] [CrossRef]
- Ma, T.; Inagaki, T.; Ban, M.; Tsuchikawa, S. Rapid Identification of Wood Species by Near-Infrared Spatially Resolved Spectroscopy (NIR-SRS) Based on Hyperspectral Imaging (HSI). Holzforschung 2019, 73, 323–330. [Google Scholar] [CrossRef]
- Tsuchikawa, S.; Kobori, H. A Review of Recent Application of near Infrared Spectroscopy to Wood Science and Technology. J. Wood Sci. 2015, 61, 213–220. [Google Scholar] [CrossRef]
- Schimleck, L.; Ma, T.; Inagaki, T.; Tsuchikawa, S. Review of near Infrared Hyperspectral Imaging Applications Related to Wood and Wood Products. Appl. Spectrosc. Rev. 2023, 58, 585–609. [Google Scholar] [CrossRef]
- Mancini, M.; Taavitsainen, V.M.; Rinnan, Å. Comparison of Classification Methods Performance for Defining the Best Reuse of Waste Wood Material Using NIR Spectroscopy. Waste Manag. 2024, 178, 321–330. [Google Scholar] [CrossRef]
- Goi, A.; Hocquette, J.F.; Pellattiero, E.; De Marchi, M. Handheld Near-Infrared Spectrometer Allows on-Line Prediction of Beef Quality Traits. Meat Sci. 2022, 184, 108694. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, Z.; Wei, J.; Dong, B.; Lee, C. Wavelength-Multiplexed Hook Nanoantennas for Machine Learning Enabled Mid-Infrared Spectroscopy. Nat. Commun. 2022, 13, 3859. [Google Scholar] [CrossRef]
- Agarwal, U.P.; Ralph, S.A.; Reiner, R.S.; Baez, C. Probing Crystallinity of Never-Dried Wood Cellulose with Raman Spectroscopy. Cellulose 2016, 23, 125–144. [Google Scholar] [CrossRef]
- Ho, T.X.; Schimleck, L.R.; Dahlen, J.; Sinha, A. Utilization of Genetic Algorithms to Optimize Loblolly Pine Wood Property Models Based on NIR Spectra and SilviScan Data. Wood Sci. Technol. 2022, 56, 1419–1437. [Google Scholar] [CrossRef]
- Lima, M.D.R.; Ramalho, F.M.G.; Trugilho, P.F.; Bufalino, L.; Dias Júnior, A.F.; Protásio, T.d.P.; Hein, P.R.G. Classifying Waste Wood from Amazonian Species by Near-Infrared Spectroscopy (NIRS) to Improve Charcoal Production. Renew. Energy 2022, 193, 584–594. [Google Scholar] [CrossRef]
- Li, P.; Tang, S.; Chen, S.; Tian, X.; Zhong, N. Hyperspectral Imaging Combined with Convolutional Neural Network for Accurately Detecting Adulteration in Atlantic Salmon. Food Control 2023, 147, 109573. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, L.; Tian, X.; Zheng, M.; Su, Z.; Zhong, N. Rapid Non-Destructive Evaluation of Texture Properties Changes in Crispy Tilapia during Crispiness Using Hyperspectral Imaging and Data Fusion. Food Control 2024, 162, 110446. [Google Scholar] [CrossRef]
- Feng, L.; Wu, B.; He, Y.; Zhang, C. Hyperspectral Imaging Combined With Deep Transfer Learning for Rice Disease Detection. Front. Plant Sci. 2021, 12, 693521. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Lv, Y.; Dong, F.; Chen, Y.; Li, H.; Rodas-González, A.; Wang, S. Combining Vis-NIR and NIR Hyperspectral Imaging Techniques with a Data Fusion Strategy for Prediction of Norfloxacin Residues in Mutton. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 322, 124844. [Google Scholar] [CrossRef]
- Yadav, C.S.; Pradhan, M.K.; Gangadharan, S.M.P.; Chaudhary, J.K.; Singh, J.; Khan, A.A.; Haq, M.A.; Alhussen, A.; Wechtaisong, C.; Imran, H.; et al. Multi-Class Pixel Certainty Active Learning Model for Classification of Land Cover Classes Using Hyperspectral Imagery. Electronics 2022, 11, 2799. [Google Scholar] [CrossRef]
- Ma, P.; Jia, X.; Xu, W.; He, Y.; Tarwa, K.; Alharbi, M.O.; Wei, C.I.; Wang, Q. Enhancing Salmon Freshness Monitoring with Sol-Gel Cellulose Nanocrystal Colorimetric Paper Sensors and Deep Learning Methods. Food Biosci. 2023, 56, 103313. [Google Scholar] [CrossRef]
- Tetko, I.V.; Karpov, P.; Van Deursen, R.; Godin, G. State-of-the-Art Augmented NLP Transformer Models for Direct and Single-Step Retrosynthesis. Nat. Commun. 2020, 11, 5575. [Google Scholar] [CrossRef]
- Zheng, Z.; Ge, Z.; Tian, Z.; Yang, X.; Zhou, Y. WoodGLNet: A Multi-Scale Network Integrating Global and Local Information for Real-Time Classification of Wood Images. J. Real. Time Image Process 2024, 21, 147. [Google Scholar] [CrossRef]
- Zhao, N.; Duan, Z.; Li, Q.; Guo, K.; Zhang, Z.; Liu, B. A Cable Insulation Defect Classification Method Based on CNN-Transformer. Front. Phys. 2024, 12, 1432527. [Google Scholar] [CrossRef]
- Zhang, X.; He, C.; Lu, Y.; Chen, B.; Zhu, L.; Zhang, L. Fault Diagnosis for Small Samples Based on Attention Mechanism. Measurement 2022, 187, 110242. [Google Scholar] [CrossRef]
- Li, Z. Extracting Spatial Effects from Machine Learning Model Using Local Interpretation Method: An Example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Chen, W.; Chen, H.; Feng, Q.; Mo, L.; Hong, S. A Hybrid Optimization Method for Sample Partitioning in Near-Infrared Analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 248, 119182. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Li, K.; Chen, Z.; Yang, Z. Identifying Wood Based on Near-Infrared Spectra and Four Gray-Level Co-Occurrence Matrix Texture Features. Forests 2021, 12, 1527. [Google Scholar] [CrossRef]
- Tuncer, F.D.; Dogu, D.; Akdeniz, E. Efficiency of Preprocessing Methods for Discrimination of Anatomically Similar Pine Species by NIR Spectroscopy. Wood Mater. Sci. Eng. 2023, 18, 212–221. [Google Scholar] [CrossRef]
- Li, X.; Cai, M.; Li, M.; Wei, X.; Liu, Z.; Wang, J.; Jia, K.; Han, Y. Combining Vis-NIR and NIR Hyperspectral Imaging Techniques with a Data Fusion Strategy for the Rapid Qualitative Evaluation of Multiple Qualities in Chicken. Food Control 2023, 145, 109416. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Guo, G.; Li, Y.; Via, B.K.; Pei, Z. Spectral Pre-Processing and Multivariate Calibration Methods for the Prediction of Wood Density in Chinese White Poplar by Visible and Near Infrared Spectroscopy. Forests 2022, 13, 62. [Google Scholar] [CrossRef]
- Chen, J.; Yu, H.; Jiang, D.; Zhang, Y.; Wang, K. A Novel NIRS Modelling Method with OPLS-SPA and MIX-PLS for Timber Evaluation. J. For. Res. 2022, 33, 369–376. [Google Scholar] [CrossRef]
- Ramezan, C.A. Transferability of Recursive Feature Elimination (RFE)-Derived Feature Sets for Support Vector Machine Land Cover Classification. Remote Sens. 2022, 14, 6218. [Google Scholar] [CrossRef]
- Leandro, J.G.R.; Gonzaga, F.B.; Latorraca, J.V.d.F. Discrimination of Wood Species Using Laser-Induced Breakdown Spectroscopy and near-Infrared Reflectance Spectroscopy. Wood Sci. Technol. 2019, 53, 1079–1091. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Zhang, J.; Che, X.; Yuan, Y.; Wang, Z.; Kong, D. A New Method of Diesel Fuel Brands Identification: SMOTE Oversampling Combined with XGBoost Ensemble Learning. Fuel 2020, 282, 118848. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Lin, Z. Spatial–Spectral Transformer for Hyperspectral Image Classification. Remote Sens. 2021, 13, 498. [Google Scholar] [CrossRef]
- Ding, K.; Lu, T.; Fu, W.; Li, S.; Ma, F. Global-Local Transformer Network for HSI and LiDAR Data Joint Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5541213. [Google Scholar] [CrossRef]
- Ahmed, T.; Wijewardane, N.K.; Lu, Y.; Jones, D.S.; Kudenov, M.; Williams, C.; Villordon, A.; Kamruzzaman, M. Advancing Sweetpotato Quality Assessment with Hyperspectral Imaging and Explainable Artificial Intelligence. Comput. Electron. Agric. 2024, 220, 108855. [Google Scholar] [CrossRef]
- Muhammad, N.A.; Isnaeni; Tahir, D. Optical Properties of Wood by Laser Spectroscopy. In Journal of Physics: Conference Series; Institute of Physics Publishing: Bristol, UK, 2019; Volume 1341. [Google Scholar]
- Qi, W.; Xiong, Z.; Tang, H.; Lu, D.; Chen, B. Compact Near-Infrared Spectrometer for Quantitative Determination of Wood Composition. J. Appl. Spectrosc. 2021, 88, 461–467. [Google Scholar] [CrossRef]
- Peng, H.; Salmén, L.; Stevanic, J.S.; Lu, J. Structural Organization of the Cell Wall Polymers in Compression Wood as Revealed by FTIR Microspectroscopy. Planta 2019, 250, 163–171. [Google Scholar] [CrossRef]
- Sharma, V.; Yadav, J.; Kumar, R.; Tesarova, D.; Ekielski, A.; Mishra, P.K. On the Rapid and Non-Destructive Approach for Wood Identification Using ATR-FTIR Spectroscopy and Chemometric Methods. Vib. Spectrosc. 2020, 110, 103097. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, J.C.; Yeon, S.; Yang, S.Y.; Yeo, H.; Choi, I.G. Rapid Prediction of the Chemical Information of Wood Powder from Softwood Species Using Near-Infrared Spectroscopy. Bioresources 2018, 13, 2440–2451. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous Prediction of Soil Properties from VNIR-SWIR Spectra Using a Localized Multi-Channel 1-D Convolutional Neural Network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
- Ru, C.; Li, Z.; Tang, R. A Hyperspectral Imaging Approach for Classifying Geographical Origins of Rhizoma Atractylodis Macrocephalae Using the Fusion of Spectrum-Image in VNIR and SWIR Ranges (VNIR-SWIR-FuSI). Sensors 2019, 19, 2045. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Li, M.; Ding, Y.; Hong, D.; Lv, Y.; He, Y. GTFN: GCN and Transformer Fusion Network With Spatial-Spectral Features for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 6600115. [Google Scholar] [CrossRef]
- Saha, D.; Manickavasagan, A. Machine Learning Techniques for Analysis of Hyperspectral Images to Determine Quality of Food Products: A Review. Curr. Res. Food Sci. 2021, 4, 28–44. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Li, C.; Wang, Z.; Chen, Y. Algorithm of Stability-Analysis-Based Feature Selection for NIR Calibration Transfer. Sensors 2022, 22, 1659. [Google Scholar] [CrossRef]
- Grimmig, R.; Lindner, S.; Gillemot, P.; Winkler, M.; Witzleben, S. Analyses of Used Engine Oils via Atomic Spectroscopy—Influence of Sample Pre-Treatment and Machine Learning for Engine Type Classification and Lifetime Assessment. Talanta 2021, 232, 122431. [Google Scholar] [CrossRef]
- Hong, D.; Han, Z.; Yao, J.; Gao, L.; Zhang, B.; Plaza, A.; Chanussot, J. SpectralFormer: Rethinking Hyperspectral Image Classification with Transformers. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5518615. [Google Scholar] [CrossRef]
- Peters, R.D.; Noble, S.D. Spectrographic Measurement of Plant Pigments from 300 to 800nm. Remote Sens. Env. 2014, 148, 119–123. [Google Scholar] [CrossRef]
- Bazi, Y.; Bashmal, L.; Al Rahhal, M.M.; Dayil, R.A.; Ajlan, N. Al Vision Transformers for Remote Sensing Image Classification. Remote Sens. 2021, 13, 516. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key Wavelengths Screening Using Competitive Adaptive Reweighted Sampling Method for Multivariate Calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Liu, C.; Chu, Z.; Weng, S.; Zhu, G.; Han, K.; Zhang, Z.; Huang, L.; Zhu, Z.; Zheng, S. Fusion of Electronic Nose and Hyperspectral Imaging for Mutton Freshness Detection Using Input-Modified Convolution Neural Network. Food Chem. 2022, 385, 132651. [Google Scholar] [CrossRef]
Parameter | VNIR-HSI System | SWIR-HSI System |
---|---|---|
Movement Speed | 9.8 mm/s | 7.5 mm/s |
Spectrometer Exposure Time | 2 ms | 3.2 ms |
Distance Between Lens and Sample | 32 cm | 32 cm |
Spectral Range | 400–1000 nm | 900–1700 nm |
Average Spectral Interval | 2.68 nm | 1.67 nm |
Model | Method | VNIR-Accuracy/% | SWIR-Accuracy/% | ||
---|---|---|---|---|---|
Train | Test | Train | Test | ||
PLS-DA | RAW | 92.32 | 95.21 | 95.71 | 95.42 |
SG | 91.34 | 95.21 | 95.18 | 95.21 | |
NOR | 95.89 | 96.67 | 99.11 | 98.75 | |
BL | 90.63 | 90.21 | 97.68 | 98.33 | |
SNV | 94.02 | 96.25 | 92.59 | 92.08 | |
MSC | 95.27 | 93.75 | 97.86 | 97.5 | |
XGBoost | RAW | 97.14 | 95.21 | 96.96 | 92.08 |
SG | 96.79 | 95.42 | 98.30 | 93.12 | |
NOR | 99.38 | 96.25 | 100 | 97.71 | |
BL | 97.68 | 94.38 | 99.55 | 96.46 | |
SNV | 94.20 | 95.62 | 99.91 | 95.21 | |
MSC | 95.54 | 81.04 | 99.20 | 85.83 | |
CNN | RAW | 99.01 ± 1.20 | 95.46 ± 1.65 | 98.29 ± 0.64 | 96.25 ± 0.98 |
SG | 97.86 ± 1.27 | 94.54 ± 0.50 | 99.04 ± 0.76 | 97.10 ± 0.41 | |
NOR | 99.91 ± 0.11 | 94.50 ± 2.11 | 99.95 ± 0.08 | 97.71 ± 0.21 | |
BL | 97.53 ± 1.90 | 94.63 ± 1.23 | 99.52 ± 0.83 | 97.75 ± 0.94 | |
SNV | 98.18 ± 0.56 | 95.46 ± 0.18 | 99.43 ± 0.76 | 98.96 ± 0.71 | |
MSC | 98.67 ± 0.79 | 93.50 ± 1.05 | 99.27 ± 0.96 | 94.16 ± 0.53 | |
CNN-Transformer | RAW | 97.09 ± 0.63 | 98.21 ± 0.67 | 99.61 ± 0.46 | 98.84 ± 0.52 |
SG | 96.61 ± 1.09 | 97.46 ± 0.63 | 95.77 ± 1.77 | 95.42 ± 2.88 | |
NOR | 95.52 ± 1.02 | 94.83 ± 1.28 | 98.07 ± 0.67 | 97.92 ± 1.47 | |
BL | 97.70 ± 0.27 | 97.04 ± 0.47 | 99.32 ± 0.53 | 99.08 ± 0.60 | |
SNV | 97.32 ± 0.83 | 96.79 ± 0.38 | 99.98 ± 0.04 | 99.92 ± 0.19 | |
MSC | 96.14 ± 1.42 | 95.46 ± 0.37 | 93.05 ± 1.41 | 89.07 ± 0.85 |
Range | Model | Indicator/% | Species | |||
---|---|---|---|---|---|---|
Golden Phoebe | Hemlock | Cypress | Camphor Pine | |||
VNIR | PLS-DA | Precision | 100 | 92.74 | 95.69 | 98.33 |
Recall | 100 | 95.83 | 92.50 | 98.33 | ||
F1-Score | 100 | 94.26 | 94.07 | 98.33 | ||
XGBoost | Precision | 100 | 96.52 | 95.08 | 93.50 | |
Recall | 100 | 92.50 | 96.67 | 95.83 | ||
F1-Score | 100 | 94.47 | 95.87 | 94.65 | ||
CNN | Precision | 100 | 96.58 | 100 | 90.91 | |
Recall | 100 | 94.17 | 92.50 | 100 | ||
F1-Score | 100 | 95.36 | 96.10 | 95.24 | ||
CNN-Transformer | Precision | 100 | 96.72 | 98.31 | 100 | |
Recall | 100 | 98.33 | 96.67 | 100 | ||
F1-Score | 100 | 97.52 | 97.48 | 100 | ||
SWIR | PLS-DA | Precision | 100 | 100 | 97.56 | 97.56 |
Recall | 97.50 | 97.50 | 100 | 100 | ||
F1-Score | 98.73 | 98.73 | 98.77 | 98.77 | ||
XGBoost | Precision | 99.17 | 95.87 | 96.58 | 99.17 | |
Recall | 100 | 96.67 | 94.17 | 100 | ||
F1-Score | 99.59 | 96.27 | 95.36 | 99.59 | ||
CNN | Precision | 100 | 98.36 | 100 | 100 | |
Recall | 100 | 100 | 98.33 | 100 | ||
F1-Score | 100 | 99.17 | 99.16 | 100 | ||
CNN-Transformer | Precision | 100 | 100 | 100 | 100 | |
Recall | 100 | 100 | 100 | 100 | ||
F1-Score | 100 | 100 | 100 | 100 |
Model | Total Parameters | Model Size (MB) | FLOPs (M) |
---|---|---|---|
PLS-DA | 2280 | 0.01 | 5.11 |
XGBoost | 204,700 | 0.78 | 1.12 |
CNN | 1,739,092 | 6.64 | 1.99 |
CNN-Transformer | 1,286,228 | 4.93 | 1.29 |
Model | Method | VNIR-Accuracy/% | SWIR-Accuracy/% | ||
---|---|---|---|---|---|
Train | Test | Train | Test | ||
PLS-DA | CARS | 92.23 | 93.54 | 98.21 | 99.58 |
SPA | 92.50 | 94.38 | 99.64 | 99.58 | |
RFE | 94.02 | 93.96 | 92.59 | 92.71 | |
XGBoost | CARS | 98.93 | 96.25 | 100 | 96.67 |
SPA | 99.64 | 97.50 | 100 | 97.29 | |
RFE | 99.20 | 97.92 | 100 | 93.54 | |
CNN | CARS | 95.61 ± 0.52 | 94.29 ± 0.72 | 92.41 ± 1.15 | 91.04 ± 0.42 |
SPA | 86.17 ± 0.34 | 91.75 ± 1.39 | 98.23 ± 0.19 | 97.42 ± 0.24 | |
RFE | 98.13 ± 0.97 | 94.58 ± 0.33 | 93.79 ± 0.46 | 91.42 ± 1.92 | |
CNN-Transformer | CARS | 94.95 ± 1.29 | 93.14 ± 1.52 | 92.86 ± 1.18 | 90.38 ± 2.76 |
SPA | 93.73 ± 0.95 | 90.54 ± 1.86 | 93.05 ± 0.77 | 90.71 ± 3.01 | |
RFE | 92.22 ± 0.67 | 90.75 ± 1.90 | 94.48 ± 0.70 | 91.67 ± 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Zhang, Y.; Tang, S.; Zeng, Z. Synergizing Wood Science and Interpretable Artificial Intelligence: Detection and Classification of Wood Species Through Hyperspectral Imaging. Forests 2025, 16, 186. https://doi.org/10.3390/f16010186
Qi Y, Zhang Y, Tang S, Zeng Z. Synergizing Wood Science and Interpretable Artificial Intelligence: Detection and Classification of Wood Species Through Hyperspectral Imaging. Forests. 2025; 16(1):186. https://doi.org/10.3390/f16010186
Chicago/Turabian StyleQi, Yicong, Yin Zhang, Shuqi Tang, and Zhen Zeng. 2025. "Synergizing Wood Science and Interpretable Artificial Intelligence: Detection and Classification of Wood Species Through Hyperspectral Imaging" Forests 16, no. 1: 186. https://doi.org/10.3390/f16010186
APA StyleQi, Y., Zhang, Y., Tang, S., & Zeng, Z. (2025). Synergizing Wood Science and Interpretable Artificial Intelligence: Detection and Classification of Wood Species Through Hyperspectral Imaging. Forests, 16(1), 186. https://doi.org/10.3390/f16010186