Estimation of Forest Canopy Height from Spaceborne Full-Waveform LiDAR Data Using a Bisection Approximation Decomposition Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. GEDI Data and Processing
2.3. ALS Data and Processing
2.4. Bisection Approximation Decomposition
- If k = 1, the entire segment is considered a canopy signal and is directly fitted using a Gaussian model.
- Otherwise, the peak position (M1) nearest to the split point (O) is identified, and a tangent point (T) is defined at M1. A tangent (Lt) is drawn perpendicular to the x-axis, centered at T. The width is set to Lt O, and the average height of the peaks is used as the amplitude to fit the sub-canopy signal (Figure 4a).
2.5. Forest Canopy Height Estimation and Accuracy Evaluation
3. Results
3.1. Waveform Decomposition
3.2. Ground Elevation Estimation with Waveform Decomposition
3.3. Forest Canopy Height Estimation with Waveform Decomposition
4. Discussion
4.1. The Impact of Terrain Slope
4.2. The Impact of ALS Canopy Height Resampling Method
- (1)
- Maximum Value Sampling (ALS-CHM(max)): extracts the maximum canopy height within the footprint, representing the vertical distance from the highest treetop to the lowest ground point. This metric corresponds to the distance between the start of the first echo and the peak of the last echo, providing an approximation of the total vertical range of the canopy.
- (2)
- 95% Relative Height Sampling (ALS-CHM(95%)): extracts the 95% relative canopy height within the footprint. This approach accounts for potential deviations of the waveform’s first peak due to canopy structural complexity or environmental factors such as wind or water vapor, correcting for these influences.
- (3)
- Interval Average Sampling (ALS-CHM(sec)): calculates the average height of pixels within the 45%–95% relative height interval. This approach better reflects the upper canopy height while mitigating the effects of gaps and low ground-level values.
4.3. Comparison with GEDI L2A Products
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett. 2010, 37, L15401. [Google Scholar] [CrossRef]
- Dubayah, R.O.; Sheldon, S.L.; Clark, D.B.; Hofton, M.A.; Blair, J.B.; Hurtt, G.C.; Chazdon, R.L. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res. 2010, 115, G00E09. [Google Scholar] [CrossRef]
- Yu, Q.; Ryan, M.G.; Ji, W.; Prihodko, L.; Anchang, J.Y.; Kahiu, N.; Nazir, A.; Dai, J.; Hanan, N.P. Assessing canopy height measurements from ICESat-2 and GEDI orbiting LiDAR across six different biomes with G-LiHT LiDAR. Environ. Res. Ecol. 2024, 3, 025001. [Google Scholar] [CrossRef]
- Bruening, J.M.; May, P.; Armston, J.; Dubayah, R. Precise and unbiased biomass estimation from GEDI data and the US Forest Inventory. Front. For. Global Chang. 2023, 7, 1149153. [Google Scholar] [CrossRef]
- Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance. Geophys. Res. Lett. 2003, 32, L21S02. [Google Scholar] [CrossRef]
- Neumann, C.; Forster, M.; Kleinschmit, B.; Itzerott, S. Utilizing a PLSR-Based Band-Selection Procedure for Spectral Feature Characterization of Floristic Gradients. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3982–3996. [Google Scholar] [CrossRef]
- Soomro, B.N.; Xiao, L.; Huang, L.; Soomro, S.H.; Molaei, M. Bilayer Elastic Net Regression Model for Supervised Spectral-Spatial Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 9, 4102–4116. [Google Scholar] [CrossRef]
- Hichem, M.; Mounira, O. Volume Height Estimation based on Fusion of Discrete Fourier Transform (DFT) and Least Square (LS) in a Tomographic SAR Application. J. Indian Soc. Remote Sens. 2016, 45, 217–228. [Google Scholar] [CrossRef]
- Zribi, M.; Guyon, D.; Motte, E.; Dayau, S.; Wigneron, J.P.; Baghdadi, N.; Pierdicca, N. Performance of GNSS-R GLORI Data for Biomass Estimation over the Landes Forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 150–158. [Google Scholar] [CrossRef]
- Chen, Q. Assessment of terrain elevation derived from satellite laser altimetry over mountainous forest areas using airborne lidar data. ISPRS J. Photogramm. Remote Sens. 2010, 65, 111–122. [Google Scholar] [CrossRef]
- Silva, C.A.; Duncanson, L.D.; Hancock, L.; Neuenschwander, A.; Thomas, N.; Hofton, M.; Fatoyinbo, L.; Simard, M.; Marshak, C.Z.; Armston, J.; et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sens. Environ. 2021, 253, 112234. [Google Scholar] [CrossRef]
- Jiang, F.; Zhao, F.; Ma, K.; Li, D.; Sun, H. Mapping the Forest Canopy Height in Northern China by Synergizing ICESat-2 with Sentinel-2 Using a Stacking Algorithm. Remote Sens. 2021, 13, 1535. [Google Scholar] [CrossRef]
- Cui, L.; Jiao, Z.; Zhao, K.; Sun, M.; Dong, Y.; Yin, S.; Zhang, X.; Guo, J.; Xie, R.; Zhu, Z.; et al. Retrieving Forest Canopy Elements Clumping Index Using ICESat GLAS Lidar Data. Remote Sens. 2021, 13, 948. [Google Scholar] [CrossRef]
- Torresani, M.; Rocchini, D.; Alberti, A.; Moudry, V.; Heym, M.; Thouverai, E.; Kacic, P.; Tomelleri, P. LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems. Ecol. Inf. 2023, 76, 102082. [Google Scholar] [CrossRef] [PubMed]
- Padalia, H.; Prakash, A.; Watham, T. Modelling aboveground biomass of a multistage managed forest through synergistic use of Landsat-OLI, ALOS-2 L-band SAR and GEDI metrics. Ecol. Inf. 2023, 77, 102234. [Google Scholar] [CrossRef]
- Pang, Y.; Lefsky, M.; Sun, G.; Ranson, J. Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar. Remote Sens. Environ. 2011, 115, 2798–2809. [Google Scholar] [CrossRef]
- Musthafa, M.; Singh, G.; Kumar, P. Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India. Environ. Monit. Assess. 2023, 195, 71. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Harding, D.J.; Keller, M.; Cohen, W.B.; Carabajal, C.C.; Espirito-Santo, F.D.B.; Hunter, M.O.; Oliveira, R.D. Estimates of forest canopy height and aboveground biomass using ICESat. Geophys. Res. Lett. 2005, 32, L22S02. [Google Scholar] [CrossRef]
- Shen, X.; Li, Q.Q.; Wu, G.; Zhu, J. Decomposition of LiDAR waveforms by B-spline-based modeling. ISPRS J. Photogramm. Remote Sens. 2017, 128, 182–191. [Google Scholar] [CrossRef]
- Gu, Z.; Lai, J.; Wang, C.; Yan, W.; Li, Z. Generalized Gaussian decomposition for full waveform LiDAR processing. Meas. Sci. Technol. 2022, 33, 065201. [Google Scholar] [CrossRef]
- Wu, H.; Xing, Y. Wavelet transform and its application to ICEat-GLAS full waveform data. In Proceedings of the 2010 International Symposium on Intelligence Information Processing and Trusted Computing (IPTC), Huanggang, China, 28–29 October 2010; IEEE Computer Society: Washington, DC, USA, 2010. [Google Scholar]
- Wang, Y.; Zhang, J.; Roncat, A.; Wagner, W. Regularizing method for the determination of the backscatter cross section in lidar data. J. Opt. Soc. Am. A. 2009, 26, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, S.; Nord-Larsen, T.; Riis-Nielsen, T. LiDAR supported estimators of wood volume and aboveground biomass from the Danish national forest inventory (2012–2016). Remote Sens. Environ. 2018, 211, 146–153. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Keller, M.; Pang, Y.; Camargo, P.B.; Hunter, M.O. Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms. J. Appl. Remote Sens. 2007, 1, 6656–6659. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Alcarde, A.C.; Stape, J.L.; Bailly, J.S.; Scolforo, H.F.; Cegatta, I.R.; Zribi, M.; Maire, G.L. Terrain Slope Effect on Forest Height and Wood Volume Estimation from GEDI Data. Remote Sens. 2021, 13, 2136. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Zeng, H.; Xi, X.; Xia, S. A revised terrain correction method for forest canopy height estimation using ICESat/GLAS data. ISPRS J. Photogramm. Remote Sens. 2015, 108, 183–190. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, F.; Qiu, Z.; He, N.; Zhu, X.; Li, Y.; Xu, Y.; Lu, Z. Enhancing Forest Canopy Height Retrieval: Insights from Integrated GEDI and Landsat Data Analysis. Sustainability 2023, 15, 10434. [Google Scholar] [CrossRef]
- Chen, R.; Wang, X.; Liu, X.; Wang, S. Optimizing GEDI Canopy Height Estimation and Analyzing Error Impact Factors Under Highly Complex Terrain and High-Density Vegetation Conditions. Forests 2024, 15, 2024. [Google Scholar] [CrossRef]
- Liu, A.; Cheng, X.; Chen, Z. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals. Remote Sens. Environ. 2021, 264, 12571. [Google Scholar] [CrossRef]
- Adrah, E.; Jaafar, W.S.W.M.; Bajaj, S.; Omar, H.; Leite, R.V.; Silva, C.A.; Mohan, M. Analyzing canopy height variations in secondary tropical forests of Malaysia using NASA GEDI. IOP Conf. Ser. Earth Environ. Sci. 2021, 880, 012031. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Ni, W.; Mu, X.; Wu, X.; Laurin, G.V.; Vangi, E.; Sterenczak, K.; Chirici, G.; Yu, S.; et al. Validating GEDI tree canopy cover product across forest types using co-registered aerial LiDAR data. ISPRS J. Photogramm. Remote Sens. 2024, 207, 326–337. [Google Scholar] [CrossRef]
- Fayad, I.; Baghdadi, N.; Alcarde, C.; Stape, J.L.; Maire, G.L. Assessment of GEDI’s LiDAR Data for the Estimation of Canopy Heights and Wood Volume of Eucalyptus plantations in Brazil. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7095–7110. [Google Scholar] [CrossRef]
- Thomas, A.; Peter, B.; Christopher, P. Extracting More Data from LiDAR in Forested Areas by Analyzing Waveform Shape. Remote Sens. 2012, 4, 682–702. [Google Scholar] [CrossRef]
- Gao, S.; Niu, Z.; Sun, G.; Zhao, D.; Kun, J.; Qin, Y. Height Extraction of Maize Using Airborne Full-Waveform LIDAR Data and a Deconvolution Algorithm. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1978–1982. [Google Scholar] [CrossRef]
- Dubayah, S.L.R. GEDI L1B Geolocated Waveform Data Global Footprint Level V001. 2020. Available online: https://lpdaac.usgs.gov/products/gedi01_bv001/ (accessed on 8 November 2024).
- Dubayah, S.L.R. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V001. 2020. Available online: https://lpdaac.usgs.gov/products/gedi02_av001/ (accessed on 8 November 2024).
- Anderson, J.; Martin, M.E.; Smith, M.-L.; Dubayah, R.O.; Hofton, M.A.; Hyde, P.; Peterson, B.E.; Blair, J.B.; Knox, R.G. The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire. Remote Sens. Environ. 2006, 105, 248–261. [Google Scholar] [CrossRef]
- Scholl, V.M.; Cattau, M.E.; Joseph, M.B.; Balch, J.K. Integrating national ecological observatory network (NEON) airborne remote sensing and in-situ data for optimal tree species classification. Remote Sens. 2020, 12, 1414. [Google Scholar] [CrossRef]
- Song, S.; Wang, B.; Gong, W.; Chen, Z.; Lin, X.; Sun, J.; Shi, S. A new waveform decomposition method for multispectral LiDAR. ISPRS J. Photogramm. Remote Sens. 2019, 149, 40–49. [Google Scholar] [CrossRef]
- Allouis, T.; Durrieu, S.; Couteron, P. A new method for incorporating Hillslope effects to improve Canopy-height estimates from large-footprint LIDAR waveforms. IEEE Geosci. Remote Sens. Lett. 2012, 9, 730–734. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, W.; Sun, G.; Chi, H.; Zhang, Z.; Guo, Z. Slope-adaptive waveform metrics of large footprint lidar for estimation of forest aboveground biomass. Remote Sens. Environ. 2019, 224, 386–400. [Google Scholar] [CrossRef]
- Lee, S.; Ni-Meister, W.; Yang, W.; Chen, Q. Physically based vertical vegetation structure retrieval from ICESat data: Validation using LVIS in White Mountain National Forest, New Hampshire, USA. Remote Sens. Environ. 2011, 115, 2776–2785. [Google Scholar] [CrossRef]
- Adam, M.; Urbazaev, M.; Dubois, C.; Schmullius, C. Accuracy Assessment of GEDI Terrain Elevation and Canopy Height Estimates in European Temperate Forests: Influence of Environmental and Acquisition Parameters. Remote Sens. 2020, 12, 3948. [Google Scholar] [CrossRef]
- Vatandaslar, C.; Narin, N.O.; Abdikan, S. Retrieval of forest height information using spaceborne LiDAR data: A comparison of GEDI and ICESat-2 missions for Crimean pine (Pinus nigra) stands. Trees-Struct. Funct. 2023, 37, 717–731. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Kato, T.; Hayashi, M.; Fu, J.; Hironshima, T. Accuracy Assessment of GEDI Terrain Elevation, Canopy Height, and Aboveground Biomass Density Estimates in Japanese Artificial Forests. Sci. Remote Sens. 2024, 10, 100144. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
Height Range (m) | Number of Footprints | Minimum Height (m) | Maximum Height (m) | Average Height (m) | Coefficient of Variation (%) |
---|---|---|---|---|---|
<10 | 92 | 4.45 | 9.97 | 7.76 | 20.85 |
10–15 | 233 | 10.01 | 14.99 | 12.92 | 11.00 |
15–20 | 682 | 15.06 | 19.99 | 17.98 | 7.50 |
20–25 | 855 | 20.00 | 24.98 | 22.24 | 6.32 |
>25 | 187 | 25.02 | 31.15 | 26.50 | 4.61 |
Methods | R2 | RMSE/m | MAE/m | rRMSE/% | EA/% |
---|---|---|---|---|---|
BAD | 0.67 | 3.33 | 2.83 | 17.19 | 84.57 |
GD | 0.37 | 5.66 | 4.20 | 29.21 | 75.82 |
WD | 0.25 | 7.49 | 5.60 | 38.68 | 67.47 |
DD | 0.23 | 8.94 | 7.42 | 46.12 | 57.19 |
Methods | Correlation Difference (R-Value) Between ALS-CHM and Estimated Results | Significant Difference (t-Value) Among Methods of Mean Absolute Residuals | |||
---|---|---|---|---|---|
FCH | BAD | GD | WD | DD | |
BAD | 0.82(0.00) | - | 39.62 | 47.11 | 77.95 |
GD | 0.61(0.00) | 39.62 | - | 26.40 | 64.26 |
WD | 0.50(0.00) | 47.11 | 26.40 | - | 55.82 |
DD | 0.48(0.00) | 77.95 | 64.26 | 55.82 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Gong, M.; Sun, H.; Chen, M.; Wang, B. Estimation of Forest Canopy Height from Spaceborne Full-Waveform LiDAR Data Using a Bisection Approximation Decomposition Method. Forests 2025, 16, 145. https://doi.org/10.3390/f16010145
Chen S, Gong M, Sun H, Chen M, Wang B. Estimation of Forest Canopy Height from Spaceborne Full-Waveform LiDAR Data Using a Bisection Approximation Decomposition Method. Forests. 2025; 16(1):145. https://doi.org/10.3390/f16010145
Chicago/Turabian StyleChen, Song, Ming Gong, Hua Sun, Ming Chen, and Binbin Wang. 2025. "Estimation of Forest Canopy Height from Spaceborne Full-Waveform LiDAR Data Using a Bisection Approximation Decomposition Method" Forests 16, no. 1: 145. https://doi.org/10.3390/f16010145
APA StyleChen, S., Gong, M., Sun, H., Chen, M., & Wang, B. (2025). Estimation of Forest Canopy Height from Spaceborne Full-Waveform LiDAR Data Using a Bisection Approximation Decomposition Method. Forests, 16(1), 145. https://doi.org/10.3390/f16010145