Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.3. Study Area Infrastructure Mapping in the Understory
2.4. Total Understory Impact
2.5. Statistical Analysis
3. Results
3.1. Infrastructure Mapping in the Understory
3.2. Validation of Understory Structure Mapping
3.3. Total Understory Impact
4. Discussion
4.1. Infrastructure Mapping in the Understory
4.2. Total Understory Impact
4.3. Perspectives of Airborne LiDAR Monitoring in RIL Forests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RIL | Reduced-impact logging |
SFM | Sustainable forest management |
GNSS | Global navigation satellite system |
LiDAR | Light detection and ranging |
RDM | Relative density model |
REDD | Reducing emissions from deforestation and forest degradation |
SFB | Brazilian Forest Service |
MMA | Ministry of the Environment |
SFMP | Sustainable forest management plan |
UAV | Unmanned aerial vehicle |
ALS | Airborne laser scanner |
FMU | Forest management unit |
APU | Annual production unit |
UTM | Universal Transverse Mercator |
EPSG | European Petroleum Survey Group |
DBH | Diameter at breast height |
AOP | Annual operational plan |
IBAMA | Brazilian Institute of Environment and Renewable Natural Resources |
DTM | Digital terrain model |
SE | Standard error |
RMSE | Root-mean-square error |
R2 | Coefficient of determination |
References
- Assis, T.O.; Aguiar, A.P.D.; von Randow, C.; Nobre, C.A. Projections of Future Forest Degradation and CO2 Emissions for the Brazilian Amazon. Sci. Adv. 2022, 8, eabj3309. [Google Scholar] [CrossRef] [PubMed]
- Erb, K.-H.; Kastner, T.; Plutzar, C.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; et al. Unexpectedly Large Impact of Forest Management and Grazing on Global Vegetation Biomass. Nature 2018, 553, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The Drivers and Impacts of Amazon Forest Degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef] [PubMed]
- Atmadja, S.S.; Duchelle, A.E.; Sy, V.D.; Selviana, V.; Komalasari, M.; Sills, E.O.; Angelsen, A. How Do REDD+ Projects Contribute to the Goals of the Paris Agreement? Environ. Res. Lett. 2022, 17, 044038. [Google Scholar] [CrossRef]
- Guerra, R.; Moutinho, P. Challenges of Sharing REDD+ Benefits in the Amazon Region. Forests 2020, 11, 1012. [Google Scholar] [CrossRef]
- Jucker, T.; Asner, G.; Dalponte, M.; Bodrick, P.; Philipson, C.; Vaughn, N.; Brelsford, C.; Burslem, D.; Deere, N.; Ewers, R.; et al. A Regional Model for Estimating the Aboveground Carbon Density of Borneo’s Tropical Forests from Airborne Laser Scanning. arXiv 2017, arXiv:1705.09242. [Google Scholar] [CrossRef]
- Sist, P.; Piponiot, C.; Kanashiro, M.; Pena-Claros, M.; Putz, F.E.; Schulze, M.; Verissimo, A.; Vidal, E. Sustainability of Brazilian Forest Concessions. For. Ecol. Manag. 2021, 496, 119440. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; de Almeida, D.R.A.; Vidal, E.; Molin, P.G.; Sontag, V.E.; Souza, S.E.X.F.; Schulze, M.D. Fake Legal Logging in the Brazilian Amazon. Sci. Adv. 2018, 4, eaat1192. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Costa, O.B.; Pedlowski, M.A.; Samek, J.H.; Miguel, E.P. Long-Term Forest Degradation Surpasses Deforestation in the Brazilian Amazon. Science 2020, 369, 1378–1382. [Google Scholar] [CrossRef]
- Brazil Lei No 11.284. Available online: https://www.planalto.gov.br/ccivil_03/_Ato2004-2006/2006/Lei/L11284.htm (accessed on 27 October 2024).
- Serviço Florestal Brasileiro Participação Social é Retomada na Gestão das Florestas Públicas. Available online: https://www.gov.br/florestal/pt-br/assuntos/noticias/participacao-social-e-retomada-na-gestao-das-florestas-publicas (accessed on 26 October 2024).
- Vidal, E.; West, T.; Lentini, M.; Souza, S.; Klauberg, C.; Waldhoff, P. Sustainable Forest Management (SFM) of Tropical Moist Forests: The Case of the Brazilian Amazon; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2021; pp. 619–650. ISBN 978-1-78676-248-1. [Google Scholar]
- Brazil L12651. Available online: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm (accessed on 29 October 2024).
- MMA Instrução Normativa MMA No 5 de 11/12/2006—Federal—LegisWeb. Available online: https://www.legisweb.com.br/legislacao/?id=76720 (accessed on 27 October 2024).
- d’Oliveira, M.V.N.; Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.-E. Estimating Forest Biomass and Identifying Low-Intensity Logging Areas Using Airborne Scanning Lidar in Antimary State Forest, Acre State, Western Brazilian Amazon. Remote Sens. Environ. 2012, 124, 479–491. [Google Scholar] [CrossRef]
- SFB—Serviço Florestal Brasileiro Concessões e Monitoramento. Available online: https://www.gov.br/florestal/pt-br/assuntos/concessoes-e-monitoramento (accessed on 27 October 2024).
- Bicknell, J.E.; Struebig, M.J.; Edwards, D.P.; Davies, Z.G. Improved Timber Harvest Techniques Maintain Biodiversity in Tropical Forests. Curr. Biol. 2014, 24, R1119–R1120. [Google Scholar] [CrossRef] [PubMed]
- Neves d’Oliveira, M.V.; Miller, R.P.; Oliveira, L.C.; Braz, E.M.; Thaines, F.; Januário, J.L.; Acuña, M.H.A. Growth Dynamics of an Amazonian Forest: Effects of Reduced Impact Logging and Recurring Atypical Climate Events during a 20-Year Study. For. Ecol. Manag. 2024, 562, 121937. [Google Scholar] [CrossRef]
- Okuda, T.; Yamada, T.; Hosaka, T.; Miyasaku, N.; Hashim, M.; Lau, A.M.S.; Saw, L.G. Canopy Height Recovery after Selective Logging in a Lowland Tropical Rain Forest. For. Ecol. Manag. 2019, 442, 117–123. [Google Scholar] [CrossRef]
- Putz, F.E.; Sist, P.; Fredericksen, T.; Dykstra, D. Reduced-Impact Logging: Challenges and Opportunities. For. Ecol. Manag. 2008, 256, 1427–1433. [Google Scholar] [CrossRef]
- Rangel Pinagé, E.; Keller, M.; Duffy, P.; Longo, M.; dos-Santos, M.N.; Morton, D.C. Long-Term Impacts of Selective Logging on Amazon Forest Dynamics from Multi-Temporal Airborne LiDAR. Remote Sens. 2019, 11, 709. [Google Scholar] [CrossRef]
- West, T.A.P.; Vidal, E.; Putz, F.E. Forest Ecology and Management Forest Biomass Recovery after Conventional and Reduced-Impact Logging in Amazonian Brazil. For. Ecol. Manag. 2014, 314, 59–63. [Google Scholar] [CrossRef]
- SFB—Serviço Florestal Brasileiro Fichas de Parametrização de Indicadores para Fins de Classificação e Bonificação no Lote de Concessão Florestal. EDITAL No 01/2007—Anexo 12, 26p. Available online: https://www.gov.br/florestal/pt-br/assuntos/concessoes-e-monitoramento/editais-em-licitacao (accessed on 27 October 2024).
- Venanzi, R.; Latterini, F.; Civitarese, V.; Picchio, R. Recent Applications of Smart Technologies for Monitoring the Sustainability of Forest Operations. Forests 2023, 14, 1503. [Google Scholar] [CrossRef]
- Otone Aguiar, M.; Fernandes da Silva, G.; Regis Mauri, G.; Ribeiro de Mendonça, A.; Ferreira da Silva, E.; Orfano Figueiredo, E.; Pereira Martins Silva, J.; Alves da Silva, V.; Freitas Silva, R.; Lessa Lavagnoli, G. Integrated Planning of Forest Exploration Infrastructures in an Amazonian Sustainable Forest Management Area. For. Ecol. Manag. 2023, 549, 121265. [Google Scholar] [CrossRef]
- Brazil D12046—Regulamenta, Em Âmbito Federal, a Lei No 11.284, de 2 de Março de 2006, Que Dispõe Sobre a Gestão de Florestas Públicas Para a Produção Sustentável, e Dá Outras Providências. Available online: https://www.planalto.gov.br/ccivil_03/_Ato2023-2026/2024/Decreto/D12046.htm#art58 (accessed on 2 November 2024).
- Cazzolla Gatti, R.; Castaldi, S.; Lindsell, J.A.; Coomes, D.A.; Marchetti, M.; Maesano, M.; Di Paola, A.; Paparella, F.; Valentini, R. The Impact of Selective Logging and Clearcutting on Forest Structure, Tree Diversity and above-Ground Biomass of African Tropical Forests. Ecol. Res. 2015, 30, 119–132. [Google Scholar] [CrossRef]
- Tallei, E.; Rivera, L.; Schaaf, A.; Vivanco, C.; Politi, N. Post-Logging Changes in a Neotropical Dry Forest Composition and Structure Modify the Ecosystem Functioning. For. Ecol. Manag. 2023, 537, 120944. [Google Scholar] [CrossRef]
- Bartels, S.F.; Macdonald, S.E. Dynamics and Recovery of Forest Understory Biodiversity over 17 Years Following Varying Levels of Retention Harvesting. J. Appl. Ecol. 2023, 60, 725–736. [Google Scholar] [CrossRef]
- Pinagé, E.R.; Matricardi, E.A.T. Detecção da Infraestrutura para Exploração Florestal em Rondônia Utilizando Dados de Sensoriamento Remoto. Floresta Ambient. 2015, 22, 377–390. [Google Scholar] [CrossRef]
- Norghauer, J.M.; Newbery, D.M. Herbivores Differentially Limit the Seedling Growth and Sapling Recruitment of Two Dominant Rain Forest Trees. Oecologia 2014, 174, 459–469. [Google Scholar] [CrossRef]
- Kapos, V.; Mulkey, S.S.; Chazdon, R.L.; Smith, A.P. Tropical Forest Plant Ecophysiology. J. Appl. Ecol. 1997, 34, 831. [Google Scholar] [CrossRef]
- Costa, F.R.C.; Senna, C.; Nakkazono, E.M. Effects of Selective Logging on Populations of Two Tropical Understory Herbs in an Amazonian Forest1. Biotropica 2002, 34, 289–296. [Google Scholar] [CrossRef]
- Kozera, C.; Rodrigues, R.R.; Dittrich, V.A.D.O. Composição florística do sub-bosque de uma floresta ombrófila densa montana, morretes, PR, Brasil. FLORESTA 2009, 39, 323–334. [Google Scholar] [CrossRef]
- Darrigo, M.R.; Dos Santos, F.A.M.; Venticinque, E.M. The Confounding Effects of Logging on Tree Seedling Growth and Herbivory in Central Amazon. Biotropica 2018, 50, 60–68. [Google Scholar] [CrossRef]
- IBGE Manual Técnico da Vegetação Brasileira. Available online: https://loja.ibge.gov.br/manual-tecnico-da-vegetac-o-brasileira.html (accessed on 27 October 2024).
- Zhao, K.; He, F. Estimating Light Environment in Forests with a New Thresholding Method for Hemispherical Photography. Can. J. For. Res. 2016, 46, 1103–1110. [Google Scholar] [CrossRef]
- Keeling, H.C.; Phillips, O.L. A Calibration Method for the Crown Illumination Index for Assessing Forest Light Environments. For. Ecol. Manag. 2007, 242, 431–437. [Google Scholar] [CrossRef]
- Sampaio, A.B.; Schmidt, I.B. Espécies Exóticas Invasoras em Unidades de Conservação Federais do Brasil. Biodivers. Bras. 2013, 3, 32–49. [Google Scholar]
- Bauer, L.; Knapp, N.; Fischer, R. Mapping Amazon Forest Productivity by Fusing GEDI Lidar Waveforms with an Individual-Based Forest Model. Remote Sens. 2021, 13, 4540. [Google Scholar] [CrossRef]
- de Carvalho, A.L.; d’Oliveira, M.V.N.; Putz, F.E.; de Oliveira, L.C. Natural Regeneration of Trees in Selectively Logged Forest in Western Amazonia. For. Ecol. Manag. 2017, 392, 36–44. [Google Scholar] [CrossRef]
- Miller, S.D.; Goulden, M.L.; Hutyra, L.R.; Keller, M.; Saleska, S.R.; Wofsy, S.C.; Figueira, A.M.S.; da Rocha, H.R.; de Camargo, P.B. Reduced Impact Logging Minimally Alters Tropical Rainforest Carbon and Energy Exchange. Proc. Natl. Acad. Sci. USA 2011, 108, 19431–19435. [Google Scholar] [CrossRef] [PubMed]
- Winstanley, P.; Dalagnol, R.; Mendiratta, S.; Braga, D.; Galvão, L.S.; Bispo, P.d.C. Post-Logging Canopy Gap Dynamics and Forest Regeneration Assessed Using Airborne LiDAR Time Series in the Brazilian Amazon with Attribution to Gap Types and Origins. Remote Sens. 2024, 16, 2319. [Google Scholar] [CrossRef]
- Richards, L.A.; Coley, P.D. Seasonal and Habitat Differences Affect the Impact of Food and Predation on Herbivores: A Comparison between Gaps and Understory of a Tropical Forest. Oikos 2007, 116, 31–40. [Google Scholar] [CrossRef]
- Bastos, J.R.; Capellesso, E.S.; Vibrans, A.C.; Marques, M.C.M. Human Impacts, Habitat Quantity and Quality Affect the Dimensions of Diversity and Carbon Stocks in Subtropical Forests: A Landscape-Based Approach. J. Nat. Conserv. 2023, 73, 126383. [Google Scholar] [CrossRef]
- Barni, P.E.; Rego, A.C.M.; Silva, F.d.C.F.; Lopes, R.A.S.; Xaud, H.A.M.; Xaud, M.R.; Barbosa, R.I.; Fearnside, P.M. Logging Amazon Forest Increased the Severity and Spread of Fires during the 2015–2016 El Niño. For. Ecol. Manag. 2021, 500, 119652. [Google Scholar] [CrossRef]
- Santos, E.G.; Svátek, M.; Nunes, M.H.; Aalto, J.; Senior, R.A.; Matula, R.; Plichta, R.; Maeda, E.E. Structural Changes Caused by Selective Logging Undermine the Thermal Buffering Capacity of Tropical Forests. Agric. For. Meteorol. 2024, 348, 109912. [Google Scholar] [CrossRef]
- Verhegghen, A.; Eva, H.; Achard, F. Assessing Forest Degradation from Selective Logging Using Time Series of Fine Spatial Resolution Imagery in Republic of Congo. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2044–2047. [Google Scholar]
- Souza, J.; Siqueira, J.V.; Sales, M.H.; Fonseca, A.V.; Ribeiro, J.G.; Numata, I.; Cochrane, M.A.; Barber, C.P.; Roberts, D.A.; Barlow, J. Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon. Remote Sens. 2013, 5, 5493–5513. [Google Scholar] [CrossRef]
- Welsink, A.-J.; Reiche, J.; de Sy, V.; Carter, S.; Slagter, B.; Suarez, D.R.; Batros, B.; Peña-Claros, M.; Herold, M. Towards the Use of Satellite-Based Tropical Forest Disturbance Alerts to Assess Selective Logging Intensities. Environ. Res. Lett. 2023, 18, 054023. [Google Scholar] [CrossRef]
- Reiche, J.; Mullissa, A.; Slagter, B.; Gou, Y.; Tsendbazar, N.-E.; Odongo-Braun, C.; Vollrath, A.; Weisse, M.J.; Stolle, F.; Pickens, A.; et al. Forest Disturbance Alerts for the Congo Basin Using Sentinel-1. Environ. Res. Lett. 2021, 16, 024005. [Google Scholar] [CrossRef]
- Castillo, G.V.B.; de Freitas, L.J.M.; Cordeiro, V.A.; Orellana, J.B.P.; Reategui-Betancourt, J.L.; Nagy, L.; Matricardi, E.A.T. Assessment of Selective Logging Impacts Using UAV, Landsat, and Sentinel Data in the Brazilian Amazon Rainforest. JARS 2022, 16, 014526. [Google Scholar] [CrossRef]
- Jackson, C.M.; Adam, E. Remote Sensing of Selective Logging in Tropical Forests: Current State and Future Directions. iForest Biogeosci. For. 2020, 13, 286. [Google Scholar] [CrossRef]
- Zhang, H.; Bauters, M.; Boeckx, P.; Van Oost, K. Mapping Canopy Heights in Dense Tropical Forests Using Low-Cost UAV-Derived Photogrammetric Point Clouds and Machine Learning Approaches. Remote Sens. 2021, 13, 3777. [Google Scholar] [CrossRef]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, Sensors, and Data Processing in Agroforestry: A Review towards Practical Applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- d’Oliveira, M.V.N.; Figueiredo, E.O.; de Almeida, D.R.A.; Oliveira, L.C.; Silva, C.A.; Nelson, B.W.; da Cunha, R.M.; de Almeida Papa, D.; Stark, S.C.; Valbuena, R. Impacts of Selective Logging on Amazon Forest Canopy Structure and Biomass with a LiDAR and Photogrammetric Survey Sequence. For. Ecol. Manag. 2021, 500, 119648. [Google Scholar] [CrossRef]
- Gomes, L.F.; Brites, R.S.; Locks, C.J.; Anjos, R.R. dos Estimativas das Alterações na Biomassa Florestal Utilizando LiDAR em Área de Manejo Florestal Sustentável na Amazônia Sul-Ocidental. Anuário Inst. Geociências 2020, 43. [Google Scholar] [CrossRef]
- Asner, G.P.; Keller, M.; Silva, J.N.M. Spatial and Temporal Dynamics of Forest Canopy Gaps Following Selective Logging in the Eastern Amazon. Glob. Change Biol. 2004, 10, 765–783. [Google Scholar] [CrossRef]
- Lentini, M.W.; Zweede, J.C.; Holmes, T.P. Measuring Ecological Impacts from Logging in Natural Forests of the Eastern Amazonia as a Tool to Assess Forest Degradation; Forest Resources Assessment Working Paper 165; 2010; pp. 1–9. Available online: https://research.fs.usda.gov/treesearch/36443 (accessed on 27 October 2024).
- Ørka, H.O.; Hansen, E.H.; Dalponte, M.; Gobakken, T.; Næsset, E. Large-Area Inventory of Species Composition Using Airborne Laser Scanning and Hyperspectral Data. Silva Fenn. 2021, 55, 10244. [Google Scholar] [CrossRef]
- Gomes, L.F. Alterações Estruturais Ocorridas em Área de Concessão na Floresta Estadual do Antimary—Acre. Master’s Thesis, (Mestrado em Ciências Florestais), Universidade de Brasília, Brasília, Brazil, 2016. [Google Scholar]
- Barros, Q.S.; d’ Oliveira, M.V.N.; da Silva, E.F.; Görgens, E.B.; de Mendonça, A.R.; da Silva, G.F.; Reis, C.R.; Gomes, L.F.; de Carvalho, A.L.; de Oliveira, E.K.B.; et al. Indicators for Monitoring Reduced Impact Logging in the Brazilian Amazon Derived from Airborne Laser Scanning Technology. Ecol. Inform. 2024, 82, 102654. [Google Scholar] [CrossRef]
- Lima, T.A.; Beuchle, R.; Griess, V.C.; Verhegghen, A.; Vogt, P. Spatial Patterns of Logging-Related Disturbance Events: A Multi-Scale Analysis on Forest Management Units Located in the Brazilian Amazon. Landsc. Ecol. 2020, 35, 2083–2100. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Casarim, F.M. Carbon Emissions from Tropical Forest Degradation Caused by Logging. Environ. Res. Lett. 2014, 9, 034017. [Google Scholar] [CrossRef]
- d’Oliveira, M.V.N.; Broadbent, E.N.; Oliveira, L.C.; Almeida, D.R.A.; Papa, D.A.; Ferreira, M.E.; Zambrano, A.M.A.; Silva, C.A.; Avino, F.S.; Prata, G.A.; et al. Aboveground Biomass Estimation in Amazonian Tropical Forests: A Comparison of Aircraft- and GatorEye UAV-Borne LiDAR Data in the Chico Mendes Extractive Reserve in Acre, Brazil. Remote Sens. 2020, 12, 1754. [Google Scholar] [CrossRef]
- Dalagnol, R.; Phillips, O.L.; Gloor, E.; Galvão, L.S.; Wagner, F.H.; Locks, C.J.; Aragão, L.E.O.C. Quantifying Canopy Tree Loss and Gap Recovery in Tropical Forests under Low-Intensity Logging Using VHR Satellite Imagery and Airborne LiDAR. Remote Sens. 2019, 11, 817. [Google Scholar] [CrossRef]
- Fisher, A.; Armston, J.; Goodwin, N.; Scarth, P. Modelling Canopy Gap Probability, Foliage Projective Cover and Crown Projective Cover from Airborne Lidar Metrics in Australian Forests and Woodlands. Remote Sens. Environ. 2020, 237, 111520. [Google Scholar] [CrossRef]
- Papa, D.d.A.; de Almeida, D.R.A.; Silva, C.A.; Figueiredo, E.O.; Stark, S.C.; Valbuena, R.; Rodriguez, L.C.E.; d’ Oliveira, M.V.N. Evaluating Tropical Forest Classification and Field Sampling Stratification from Lidar to Reduce Effort and Enable Landscape Monitoring. For. Ecol. Manag. 2020, 457, 117634. [Google Scholar] [CrossRef]
- Rex, F.E.; Corte, A.P.D.; Silva, C.A.; Machado, S.d.A.; Sanquetta, C.R. Dynamics of Above-Ground Biomass in the Brazilian Amazon Using LiDAR Data. Anuário Inst. Geociências 2020, 43, 228–238. [Google Scholar] [CrossRef]
- SFB—Serviço Florestal Brasileiro Floresta Nacional do Jamari (RO). Available online: https://www.gov.br/florestal/pt-br/assuntos/concessoes-e-monitoramento/concessoes-florestais-em-andamento/floresta-nacional-do-jamari-ro-2/floresta-nacional-do-jamari-ro-1 (accessed on 27 October 2024).
- McGaughey, B. FUSION/LDV: Software for LIDAR Data Analysis and Visualization; Forest Service: Washington, DC, USA, 2024; p. 226.
- Andersen, H.-E.; Clarkin, T.; Winterberger, K.; Strunk, J. An Accuracy Assessment of Positions Obtained Using Survey- and Recreational-Grade Global Positioning System Receivers across a Range of Forest Conditions within the Tanana Valley of Interior Alaska. West. J. Appl. For. 2009, 24, 128–136. [Google Scholar] [CrossRef]
- IBAMA Norma de Execução No 1, de 24 de Abril de 2007. Diretrizes Técnicas Para Elaboração Dos Planos de Manejo Florestal Sustentável—PMFS. In Diário Oficial Da União: Seção 1, Brasília, DF; 30 April 2007; p. 405. Available online: https://www.ibama.gov.br/component/legislacao/?view=legislacao&legislacao=113233 (accessed on 27 October 2024).
- ESRI ArcMap Software, ArcGIS Release 10.8.2; ESRI: Redlands, CA, USA, 2023.
- Han, X.-F.; Jin, J.S.; Wang, M.-J.; Jiang, W.; Gao, L.; Xiao, L. A Review of Algorithms for Filtering the 3D Point Cloud. Signal Process. Image Commun. 2017, 57, 103–112. [Google Scholar] [CrossRef]
- Kraus, K.; Pfeifer, N. Advanced DTM Generation From Lidar Data. Int. Arch. Photogramm. Remote Sens. 2001, 3-W4, 23–30. [Google Scholar]
- Azizi, Z.; Najafi, A.; Sadeghian, S. Forest Road Detection Using LiDAR Data. J. For. Res. 2014, 25, 975–980. [Google Scholar] [CrossRef]
- Clode, S.; Rottensteiner, F.; Kootsookos, P.; Zelniker, E. Detection and Vectorization of Roads from Lidar Data. Photogramm. Eng. Remote Sens. 2007, 73, 517–535. [Google Scholar] [CrossRef]
- White, R.A.; Dietterick, B.C.; Mastin, T.; Strohman, R. Forest Roads Mapped Using LiDAR in Steep Forested Terrain. Remote Sens. 2010, 2, 1120–1141. [Google Scholar] [CrossRef]
- Quackenbush, L.J. A Review of Techniques for Extracting Linear Features from Imagery. Photogramm. Eng. Remote Sens. 2004, 70, 1383–1392. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Hunter, G.J. A Simple Positional Accuracy Measure for Linear Features. Int. J. Geogr. Inf. Sci. 1997, 11, 299–306. [Google Scholar] [CrossRef]
- d’Oliveira, M.V.N.; Figueiredo, E.O.; Papa, D.A. Uso Do LiDAR Como Ferramenta Para o Manejo de Precisão Em FLorestas Tropicais; Embrapa: Brasília, DF, Brazil; 130p, Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1029435/uso-do-lidar-como-ferramenta-para-o-manejo-de-precisao-em-florestas-tropicais (accessed on 27 October 2024).
- R Core Team. R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 27 October 2024).
- Box, G.E.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005; p. 672. ISBN 978-0-471-71813-0. [Google Scholar]
- Mukaka, M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Locks, C.J.; Matricardi, E.A.T. Estimativa de Impactos Da Extração Seletiva de Madeiras Na Amazônia Utilizando Dados LIDAR. Ciência Florest. 2019, 29, 481. [Google Scholar] [CrossRef]
- Ellis, P.; Griscom, B.; Walker, W.; Gonçalves, F.; Cormier, T. Mapping Selective Logging Impacts in Borneo with GPS and Airborne Lidar. For. Ecol. Manag. 2016, 365, 184–196. [Google Scholar] [CrossRef]
- Arevalo, B.; Valladarez, J.; Muschamp, S.; Kay, E.; Finkral, A.; Roopsind, A.; Putz, F.E. Effects of Reduced-Impact Selective Logging on Palm Regeneration in Belize. For. Ecol. Manag. 2016, 369, 155–160. [Google Scholar] [CrossRef]
- Johns, J.S.; Barreto, P.; Uhl, C. Logging Damage during Planned and Unplanned Logging Operations in the Eastern Amazon. For. Ecol. Manag. 1996, 89, 59–77. [Google Scholar] [CrossRef]
- Pereira, R.; Zweede, J.; Asner, G.P.; Keller, M. Forest Canopy Damage and Recovery in Reduced-Impact and Conventional Selective Logging in Eastern Para, Brazil. For. Ecol. Manag. 2002, 168, 77–89. [Google Scholar] [CrossRef]
- Jackson, S.M.; Fredericksen, T.S.; Malcolm, J.R. Area Disturbed and Residual Stand Damage Following Logging in a Bolivian Tropical Forest. For. Ecol. Manag. 2002, 166, 271–283. [Google Scholar] [CrossRef]
- Braz, E.M.; Oliveira, M.V.N. D’ Planejamento da Extração Madeireira Dentro de Critérios Econômicos e Ambientais; Embrapa Acre: Rio Branco, AC, Brazil, 2001; p. 17. ISSN 0100-9915. [Google Scholar]
- CONAMA National Environmental Council 2009. Resolução no 406/2009. Available online: https://www.gov.br/mma/pt-br/pagina-inicial (accessed on 27 October 2024).
- Garrastazu, M.C.; Rosot, M.A.D. Manual de Orientação e uso do GPS de Navegação (Garmin 76MAP CSX); Embrapa Florestas: Colombo, PR, Brazil, 2011; N. 229; p. 53. ISSN 1980-3958. [Google Scholar]
- Lee, T.; Bettinger, P.; Merry, K.; Cieszewski, C. The Effects of Nearby Trees on the Positional Accuracy of GNSS Receivers in a Forest Environment. PLoS ONE 2023, 18, e0283090. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, P.; Coppin, P.; Hermy, M. Impact of Forest Canopy on Quality and Accuracy of GPS Measurements. Int. J. Remote Sens. 1999, 20, 3595–3610. [Google Scholar] [CrossRef]
- Figueiredo, E.; Braz, E.; d’Oliveira, M. Manejo de Precisão Em Florestas Tropicais: Modelo Digital de Exploração Florestal; Embrapa Acre: Rio Branco, AC, Brazil, 2007; p. 184. ISBN 978-85-99190-04-3. [Google Scholar]
- Sist, P.; Rutishauser, E.; Peña-Claros, M.; Shenkin, A.; Hérault, B.; Blanc, L.; Baraloto, C.; Baya, F.; Benedet, F.; da Silva, K.E.; et al. The Tropical Managed Forests Observatory: A Research Network Addressing the Future of Tropical Logged Forests. Appl. Veg. Sci. 2015, 18, 171–174. [Google Scholar] [CrossRef]
- Andersen, H.; Reutebuch, S.E.; Mcgaughey, R.J.; Marcus, V.N.; Keller, M. Remote Sensing of Environment Monitoring Selective Logging in Western Amazonia with Repeat Lidar Fl Ights. Remote Sens. Environ. 2013, 151, 157–165. [Google Scholar] [CrossRef]
- Mendes, F.d.S.; Jardim, F.C.d.S.; de Carvalho, J.O.P.; Souza, D.V.; Araújo, C.B.; de Oliveira, M.G.; Leal, E.d.S. Dinâmica da estrutura da vegetação do sub-bosque sob influência da exploração em uma floresta de terra firme no município de Moju—PA. Ciência Florest. 2013, 23, 377–389. [Google Scholar] [CrossRef]
- da Costa, V.A.M.; Oliveira, A.d.F.d.; dos Santos, J.G.; Bovo, A.A.A.; de Almeida, D.R.A.; Gorgens, E.B. Assessing the Utility of Airborne Laser Scanning Derived Indicators for Tropical Forest Management. South. For. J. For. Sci. 2020, 82, 352–358. [Google Scholar] [CrossRef]
- Schulze, M.; Zweede, J. Canopy Dynamics in Unlogged and Logged Forest Stands in the Eastern Amazon. For. Ecol. Manag. 2006, 236, 56–64. [Google Scholar] [CrossRef]
- Kleinschroth, F.; Healey, J.R. Impacts of Logging Roads on Tropical Forests. Biotropica 2017, 49, 620–635. [Google Scholar] [CrossRef]
- Rocha, N.C.V.; Adami, M.; Galbraith, D.; Freitas, L.J.M. de Signature of Logging in the Brazilian Amazon Still Detected after 17 Years. For. Ecol. Manag. 2024, 561, 121850. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of Tropical Forest Degradation by Selective Logging and Fire Using Landsat Imagery. Remote Sens. Environ. 2010, 114, 1117–1129. [Google Scholar] [CrossRef]
- Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sens. 2019, 11, 961. [Google Scholar] [CrossRef]
- Sloan, S.; Talkhani, R.R.; Huang, T.; Engert, J.; Laurance, W.F. Mapping Remote Roads Using Artificial Intelligence and Satellite Imagery. Remote Sens. 2024, 16, 839. [Google Scholar] [CrossRef]
- Sui, H.; Zhou, N.; Zhou, M.; Ge, L. Vector Road Map Updating from High-Resolution Remote-Sensing Images with the Guidance of Road Intersection Change Detection and Directed Road Tracing. Remote Sens. 2023, 15, 1840. [Google Scholar] [CrossRef]
- Kazama, V.S.; Corte, A.P.D.; Robert, R.C.G.; Sanquetta, C.R.; Arce, J.E.; Oliveira-Nascimento, K.A.; DeArmond, D. Global Review on Forest Road Optimization Planning: Support for Sustainable Forest Management in Amazonia. For. Ecol. Manag. 2021, 492, 119159. [Google Scholar] [CrossRef]
- Morais, P.d.P.; Arima, E.Y.; de Souza, Á.N.; Pereira, R.S.; Emmert, F.; Cardoso, R.M.; Miguel, E.P.; Matricardi, E.A.T. Assessment of Forest Road Models in Concession Areas in the Brazilian Amazon. Forests 2023, 14, 1388. [Google Scholar] [CrossRef]
- Veríssimo, A.; Pereira, D. Produção na Amazônia Florestal: Características, desafios e oportunidades. Parceiras Estratégicas 2014, 18, 13–44. [Google Scholar]
- Garrido Filha, I. Manejo florestal: Questões econômico-financeiras e ambientais. Estud. Av. 2002, 16, 91–106. [Google Scholar] [CrossRef]
- Barros, Q.S.; Rodrigues, N.M.M.; Pinheiro, R.d.M.; Ferreira, E.J.L. Potencial da tecnologia LiDAR terrestre na área florestal. Sci. Nat. 2023, 5. [Google Scholar] [CrossRef]
- SFB—Serviço Florestal Brasileiro Extrato De Contrato No 7/2024—Uasg 440075—Ministério do Meio Ambiente e Mudança do Clima|Serviço Florestal Brasileiro. Available online: https://diariolink.com.br/resultado/7989208 (accessed on 2 November 2024).
- de Freitas, L.J.M.; de Souza, A.L.; Leite, H.G.; da Silva, M.L. Análise técnica e estimativas de custos de inventário de prospecção em uma floresta estacional semidecidual submontana. Rev. Árvore 2005, 29, 65–75. [Google Scholar] [CrossRef]
- Cotações e Boletins. Available online: https://www.bcb.gov.br/estabilidadefinanceira/historicocotacoes (accessed on 2 November 2024).
- Cotações do Dólar, Euro e Risco País—Brasil, de 1994 a 2020. Available online: https://portalbrasil.net/indices_dolar.htm (accessed on 3 November 2024).
Period | 2011 | 2013 | 2014 | 2015 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|---|---|
Laser scanner | Optech 3100 | Optech Orion | Trimble Harrier 68i | Optech 3100 | Optech ALTM Gemini | Optech ALTM Gemini | Optech ALTM Gemini | Optech ALTM Gemini |
Flight altitude (m) | 850 | 853 | 500 | 750 | 700 | 700 | 700 | 700 |
Scanning frequency | 59.8 kHz | 67.5 kHz | 360 kHz | 55 kHz | 100 kHz | 100 kHz | 100 kHz | 100 kHz |
Scanning angle | 11.1° | 11.1° | 15° | 15° | 15° | 15° | 15° | 15° |
Side overlap | 65% | 65% | 65% | 70% | 65% | 70% | 70% | 70% |
Mean return density (per m2) | 25.8 | 32.9 | 49.6 | 59.2 | 30.72 | 30.18 | 28.5 | 50.0 |
Price (USD ha−1) | 9.47 | 8.0 | 11.0 | 9.0 | 3.8 | 3.3 | — | — |
Area Code | FMU | APU | Interval (Months) * | LiDAR Coverage (ha) | Scan (m3.ha−1) |
---|---|---|---|---|---|
1 | I | 1 | 9 | 102.8 | 15.6 |
2 | I | 2 | 33 | 133.0 | 15.4 |
3 | I | 3 | 26 | 118.2 | 18.3 |
4 | I | 4 | 2 | 550.4 | 12.6 |
5 | I | 5 | 5 | 124.1 | 19.4 |
6 | I | 6 | 7 | 132.8 | 10.4 |
7 | I | 7 | 3 | 209.6 | 16.2 |
8 | I | 8 | 17 | 249.8 | 17.6 |
9 | I | 9 | 3 | 171.6 | 17.6 |
10 | I | 10 | 15 | 124.5 | 17.3 |
11 | I | 11 | 4 | 124.6 | 19.2 |
12 | I | 16 | 4 | 432.2 | 12.8 |
13 | II | 1 | 8 | 305.9 | 9.9 |
14 | III | 1 | 42 | 205.8 | 13.9 |
15 | III | 2 | 21 | 228.6 | 14.4 |
16 | III | 3 | 14 | 115.5 | 10.8 |
17 | III | 3 | 14 | 102.9 | 9.9 |
18 | III | 4 | 4 | 189.0 | 11.5 |
19 | III | 5 | 3 | 187.0 | 12.6 |
20 | III | 5 | 36 | 134.0 | 8.1 |
21 | III | 6 | 10 | 224.4 | 10.7 |
22 | III | 11 | 9 | 241.0 | 14.5 |
23 | III | 11 | 3 | 199.7 | 13.4 |
24 | III | 12 | 16 | 624.8 | 11.1 |
25 | III | 14 | 11 | 448.5 | 12.9 |
Mean (±SE) | 227.2 (±28.3) | 13.8 (±0.64) |
Infrastructure | Density | Statistics | |||||
---|---|---|---|---|---|---|---|
GNSS | RDM | Difference (%) | p-Value | RMSE | R2 | r | |
Primary roads (m.ha−1) | 5.74 | 5.62 | −2.1 | 0.93 | 0.53 | 0.98 | 0.99 (p < 0.01) |
Secondary roads (m.ha−1) | 21.11 | 21.01 | −0.5 | 0.95 | 2.33 | 0.75 | 0.87 (p < 0.01) |
Skid trails (m.ha−1) | 77.41 | 98.28 | 27.0 | 0.27 | 26.8 | 0.68 | 0.83 (p = 0.08) |
Log landings (n.ha−1) | 0.06 | 0.056 | −0.7 | 0.84 | 0.003 | 0.92 | 0.96 (p < 0.01) |
Infrastructure | Overlap (%) | ||
---|---|---|---|
5 m | 10 m | 20 m | |
Primary roads | 58 ± 4.2 | 79 ± 3.6 | 98 ± 1.2 |
Secondary roads | 55 ± 2.9 | 82 ± 2.4 | 96 ± 1.0 |
Skid trails | 44 ± 2.6 | 60 ± 2.2 | 74 ± 2.3 |
Log landings | 55 ± 0.6 | 65 ± 2.2 | 92 ± 4.3 |
Felled tree gaps | 35 ± 3.1 | 47 ± 3.0 | 81 ± 2.5 |
Area Code | Log Landings | Trails | Sec. Roads | Prim. Roads | Gaps | Total Impact |
---|---|---|---|---|---|---|
1 | 0.56% | 7.00% | 1.51% | 1.81% | 16.93% | 27.81% |
2 | 0.37% | 2.56% | 1.33% | 1.74% | 11.29% | 17.28% |
3 | 0.30% | 3.44% | 1.93% | 0.00% | 12.61% | 18.28% |
4 | 0.58% | 7.01% | 1.94% | 0.44% | 8.74% | 18.70% |
5 | 0.39% | 10.47% | 2.06% | 0.00% | 14.04% | 26.95% |
6 | 0.36% | 4.93% | 1.41% | 0.73% | 5.35% | 12.78% |
7 | 0.42% | 5.49% | 1.65% | 0.72% | 5.49% | 13.76% |
8 | 0.31% | 4.75% | 1.35% | 0.17% | 7.04% | 13.62% |
9 | 0.59% | 12.24% | 2.36% | 0.55% | 14.92% | 30.66% |
10 | 0.54% | 10.25% | 2.04% | 2.38% | 14.71% | 29.91% |
11 | 0.64% | 10.61% | 2.38% | 1.87% | 16.31% | 31.81% |
12 | 0.50% | 4.05% | 2.75% | 1.41% | 5.59% | 14.30% |
13 | 0.34% | 5.46% | 1.13% | 0.87% | 6.06% | 13.86% |
14 | 0.09% | 1.37% | 0.70% | 0.32% | 2.58% | 5.06% |
15 | 0.25% | 5.93% | 1.69% | 0.81% | 5.55% | 14.24% |
16 | 0.32% | 5.89% | 1.43% | 0.00% | 3.74% | 11.38% |
17 | 0.27% | 4.85% | 1.65% | 1.28% | 4.91% | 12.96% |
18 | 0.42% | 6.83% | 2.51% | 0.24% | 8.10% | 18.10% |
19 | 0.38% | 6.90% | 2.32% | 1.16% | 11.29% | 22.05% |
20 | 0.26% | 5.15% | 1.41% | 0.69% | 7.98% | 15.49% |
21 | 0.30% | 4.67% | 1.40% | 0.50% | 3.74% | 10.61% |
22 | 0.34% | 4.91% | 2.17% | 0.69% | 5.97% | 14.09% |
23 | 0.34% | 8.51% | 1.62% | 0.60% | 10.19% | 21.27% |
24 | 0.22% | 2.97% | 1.36% | 0.75% | 4.56% | 9.87% |
25 | 0.28% | 8.00% | 1.52% | 1.18% | 9.30% | 20.28% |
Mean ± (SE) | 0.37% ± (0.03%) | 6.17% ± (0.54%) | 1.74% ± (0.10%) | 0.84% ± (0.13%) | 8.68% ± (0.85%) | 17.80% ± (1.41%) |
Metrics | Log Landings (%) | Trails (%) | Secondary Roads (%) | Primary Roads (%) | Gaps (%) | Total Impact (%) | |
---|---|---|---|---|---|---|---|
Time Interval (months) | 1 to 12 | 0.43 ± 0.03 | 7.14 ± 0.63 | 1.91 ± 0.13 | 0.85 ± 0.14 | 9.47 ± 1.12 | 19.80 ± 1.8 |
13 to 24 | 0.32 ± 0.05 | 5.77 ± 1.00 | 1.59 ± 0.11 | 0.90 ± 0.35 | 6.75 ± 1.65 | 15.33 ± 2.9 | |
>24 | 0.25 ± 0.06 | 3.13 ± 0.80 | 1.34 ± 0.25 | 0.68 ± 0.38 | 8.61 ± 2.24 | 14.03 ± 3.0 | |
Volume Logged (m3.ha−1) | 8 to 12 | 0.31 ± 0.02 | 5.09 ± 0.39 | 1.54 ± 0.15 | 0.63 ± 0.14 | 5.55 ± 0.61 | 13.13 ± 0.9 |
12.1 to 16 | 0.37 ± 0.05 | 5.62 ± 0.75 | 1.76 ± 0.18 | 1.02 ± 0.17 | 8.74 ± 1.28 | 17.51 ± 1.9 | |
>16 | 0.45 ± 0.05 | 8.18 ± 1.32 | 1.97 ± 0.14 | 0.81 ± 0.36 | 12.16 ± 1.59 | 23.57 ± 3.1 | |
Concession Areas | FMU I | 0.46 ± 0.03 | 6.90 ± 0.94 | 1.89 ± 0.13 | 0.98 ± 0.24 | 11.08 ± 1.28 | 21.32 ± 2.16 |
FMU II | 0.34 | 5.46 | 1.13 | 0.87 | 6.06 | 13.86 | |
FMU III | 0.29 ± 0.02 | 5.50 ± 0.58 | 1.65 ± 0.14 | 0.69 ± 0.11 | 6.49 ± 0.81 | 14.62 ± 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, L.; Bias, E.d.S.; Barros, Q.S.; Pádua, L.; Matricardi, E.A.T.; Sousa, J.J. Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR. Forests 2025, 16, 130. https://doi.org/10.3390/f16010130
Ferreira L, Bias EdS, Barros QS, Pádua L, Matricardi EAT, Sousa JJ. Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR. Forests. 2025; 16(1):130. https://doi.org/10.3390/f16010130
Chicago/Turabian StyleFerreira, Leilson, Edilson de Souza Bias, Quétila Souza Barros, Luís Pádua, Eraldo Aparecido Trondoli Matricardi, and Joaquim J. Sousa. 2025. "Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR" Forests 16, no. 1: 130. https://doi.org/10.3390/f16010130
APA StyleFerreira, L., Bias, E. d. S., Barros, Q. S., Pádua, L., Matricardi, E. A. T., & Sousa, J. J. (2025). Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR. Forests, 16(1), 130. https://doi.org/10.3390/f16010130