Describing and Modelling Stem Form of Tropical Tree Species with Form Factor: A Comprehensive Review
Abstract
:1. Introduction
2. Tree Stem Form and Its Variation
2.1. Tree Form Theories
2.2. Measures of Tree Stem Form
3. Form Factors
3.1. Types of Form Factors
- Absolute form factor
- 2.
- Normal form factor
- 3.
- Breast height form factor
3.2. Existing Form Factors for Different Tree Species and Their Variations
S/N | Species | Country (District) | Stem form Factor (Mean) | Forest Type | Reference |
---|---|---|---|---|---|
1 | Albies densa | Bhutan | 0.56 | Plantation | [9] |
2 | Castanopsis indica | Nepal | 0.59 | Moist Forest | [63] |
3 | Dalbergia sissoo | Nepal | 0.50–0.56 | Moist Forest | [66] |
4 | Mallotus philippensis | India | 0.57 | Moist Forest | [23] |
5 | Paraserianthes falcataria | Indonesia (Java) | 0.65 | Plantation | [67] |
6 | Paraserianthes falcataria | Indonesia (Kalimantan) | 0.48 | Plantation | [58] |
7 | Pinus roxburghii | Nepal | 0.63 | Moist Forest | [63] |
8 | Pinus spinulosa | Bhutan | 0.50 | Plantation | [9] |
9 | Pinus wallichiana | Bhutan | 0.49 | Plantation | [9] |
10 | Schima wallichii | Nepal | 0.58 | Moist Forest | [63] |
11 | Shorea robusta | Nepal (Banke) | 0.43 | Moist Forest | [7] |
12 | Shorea robusta | Nepal (Nawalparasi) | 0.51–0.65 | Moist Forest | [66] |
13 | Shorea robusta | Nepal (Bara) | 0.33 | Moist Forest | [64] |
14 | Shorea robusta | Nepal (Parbat) | 0.59 | Moist Forest | [63] |
15 | Swietenia macrophylla | Indonesia (Central Java) | 0.68 | Plantation | [46] |
16 | Swietenia macrophylla | Indonesia (East Java) | 0.46 | Plantation | [68] |
17 | Tectona grandis | India | 0.44 | Moist Forest | [23] |
18 | Terminalia alata | Nepal | 0.52–0.66 | Moist Forest | [66] |
19 | Terminalia elliptica | India | 0.42 | Moist Forest | [23] |
20 | Tsuga dumosa | Bhutan | 0.48 | Plantation | [9] |
4. Form Factor Functions
Form Factor Functions Tested for Different Tropical Species
Species | Parameters | n | Max dbh (cm) | RMSE | R2 | Forest Type | Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b1 | b2 | b3 | b4 | b5 | b6 | |||||||
Abies densa | 0.5367 | −0.016 | ns | ns | −0.097 | 14.752 | ns | 45 | 60.3 | N/A | 0.45 | * C. plantation | [9] |
Paraserianthes falcataria | 0.416 | −0.070 | 8.085 | −0.034 | −0.001 | 5.485 | −0.154 | 24 | 28.3 | 0.051 | N/A | * S. plantation | [58] |
Pinus spinulosa | 0.4505 | ns | −16.412 | 0.281 | −0.153 | 14.270 | ns | 58 | 75.3 | N/A | 0.57 | * C. plantation | [9] |
Pinus wallichiana | 0.6384 | −0.023 | −39.308 | ns | −0.086 | 43.190 | −7.639 | 59 | 95.8 | N/A | 0.43 | * C. plantation | [9] |
Tsuga dumosa | 0.5425 | −0.019 | −5.847 | ns | ns | 4.994 | ns | 89 | 107.4 | N/A | 0.32 | * C. plantation | [9] |
Acacia decurrens | −2.812 | 34,386.117 | −6841. 019 | 67.464 | 325.494 | −332.262 | - | 58 | 14.0 | 0.037 | 0.23 | Woodlots & * S. plantation | [75] |
Shorea robusta | 0.2302 | 4.927 × 10−3 | −4.753 × 10−5 | - | - | - | - | 100 | 112.7 | N/A | 0.23 | * S. plantation | [64] |
Shorea robusta | 0.0307 | 0.028 | −6.04 × 10−4 | - | - | - | - | 100 | 36.5 ** | N/A | 0.21 | * S. plantation | [64] |
Tectona grandis | 0.0926 | 6.677 | −3.014 | 0.012 | - | - | - | 120 | 26.55 | N/A | 0.83 | * E. plantation | [53] |
5. Tree Growth and Form Factors
6. Applications of Form-Factor Approach in Volume Estimation
7. Concerns Associated with Using Default or Generic Form Factors in Volume Estimation
8. Conclusions, Recommendations, and Opportunities for Future Research and Development
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer Science & Business Media: Dordrecht, The Netherlands, 2012; 458p. [Google Scholar] [CrossRef]
- Morrison, M.L.; Marcot, B.G. An evaluation of resource inventory and monitoring program used in national forest planning. Environ. Manag. 1995, 19, 147–156. [Google Scholar] [CrossRef]
- UNFCCC. Key Decisions Relevant for Reducing Emissions from Deforestation and Forest Degradation in Developing Countries (REDD+); United Nations Framework Convention on Climate Change (UNFCCC) Secretariat: Bonn, Germany, 2014; 44p. [Google Scholar]
- Pearson, T.R. REDD+: Protecting climate, forests and livelihoods. Forests 2021, 12, 463. [Google Scholar] [CrossRef]
- Hossain, M.S.; Oluwajuwon, T.V.; Ludgen, A.N.; Hasert, D.P.; Sitanggang, M.; Offiah, C. Formulating biomass allometric model for Paraserianthes falcataria (L) Nielsen (Sengon) in smallholder plantations, Central Kalimantan, Indonesia. For. Sci. Technol. 2023, 19, 268–284. [Google Scholar] [CrossRef]
- Salekin, S.; Catalán, C.H.; Boczniewicz, D.; Phiri, D.; Morgenroth, J.; Meason, D.F.; Mason, E.G. Global tree taper modelling: A review of applications, methods, functions, and their parameters. Forests 2021, 12, 913. [Google Scholar] [CrossRef]
- Subedi, T.; Bhandari, S.K.; Pandey, N.; Timilsina, Y.P.; Mahatara, D. Form factor and volume equations for individual trees of Shorea robusta in Western low land of Nepal. Austrian J. For. Sci. 2021, 3, 143–166. [Google Scholar]
- de Lima, R.B.; Rutishauser, E.; da Silva, J.A.A.; Guedes, M.C.; Herault, B.; de Oliveira, C.P.; da Silva Aparício, P.; Sotta, E.D.; da Silva, D.A.S.; Ferreira, R.L.C. Accurate estimation of commercial volume in tropical forests. For. Sci. 2021, 67, 14–21. [Google Scholar] [CrossRef]
- Tenzin, J.; Wangchuk, T.; Hasenauer, H. Form factor functions for nine commercial tree species in Bhutan. Forestry 2017, 90, 359–366. [Google Scholar] [CrossRef]
- Oluwajuwon, T.V. Form Factors and Volume Models for Paraserianthes falcataria (Sengon) in Smallholder Plantation Forests of Central Kalimantan, Indonesia. Master’s Thesis, Technische Universität Dresden, Dresden, Germany, 2022. [Google Scholar]
- Muhairwe, C.K. Examination and Modelling of Tree Form and Taper over Time for Interior Lodgepole Pine. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1994. [Google Scholar] [CrossRef]
- Larson, P.R. Stem form development of forest trees. For. Sci. 1963, 9, a0001-42. [Google Scholar] [CrossRef]
- Osawa, A. Fine-resolution analysis of stem form and its implication to the mechanism of plant self-thinning. Can. J. For. Res. 1992, 22, 403–412. [Google Scholar] [CrossRef]
- Husch, B. Forest Mensuration and Statistics; Ronald Press Co.: New York, NY, USA, 1963; 474p. [Google Scholar]
- Newnham, R.M. A Variable-Form Taper Function; Information Report PI-X-83; Petawawa National Forest Institute: Laurentian Hills, ON, Canada, 1988. [Google Scholar]
- Nabeshima, E.; Kubo, T.; Hiura, T. Variation in tree diameter growth in response to the weather conditions and tree size in deciduous broad-leaved trees. For. Ecol. Manag. 2010, 259, 1055–1066. [Google Scholar] [CrossRef]
- Smith, J.H.G. Influences of spacing on radial growth and percentage latewood of Douglas-fir, western hemlock, and western red cedar. Can. J. For. Res. 1980, 10, 169–175. [Google Scholar] [CrossRef]
- Dudzińska, M. Model of percentage of stem section volume in the total stem volume for the mountain and the lowland beech. Sylwan 2003, 4, 28–33. [Google Scholar]
- Schneider, R. Understanding the factors influencing stem form with modelling tools. In Progress in Botany; Cánovas, F., Lüttge, U., Matyssek, R., Pretzsch, H., Eds.; Springer: Cham, Switzerland, 2018; Volume 80, pp. 295–316. [Google Scholar] [CrossRef]
- Gray, H.R. The Form and Taper of Forest-Tree Stems; Imperial Forestry Institute, University of Oxford: Oxford, UK, 1956; 84p. [Google Scholar]
- Karlsson, K. Stem form and taper changes after thinning and nitrogen fertilization in Picea abies and Pinus sylvestris stands. Scand. J. For. Res. 2000, 15, 621–632. [Google Scholar] [CrossRef]
- Jacobs, M.; Rais, A.; Pretzsch, H. Analysis of stand density effects on the stem form of Norway spruce trees and volume miscalculation by traditional form factor equations using terrestrial laser scanning (TLS). Can. J. For. Res. 2020, 50, 51–64. [Google Scholar] [CrossRef]
- Adekunle, V.A.J.; Nair, K.N.; Srivastava, A.K.; Singh, N.K. Models and form factors for stand volume estimation in natural forest ecosystems: A case study of Katarniaghat Wildlife Sanctuary (KGWS), Bahraich District, India. J. For. Res. 2013, 24, 217–226. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, C.; Wei, X.; Blanco, J.A.; Trancoso, R. Tree profile equations are significantly improved when adding tree age and stocking degree: An example for Larix gmelinii in the Greater Khingan Mountains of Inner Mongolia, northeast China. Eur. J. For. Res. 2020, 139, 443–458. [Google Scholar] [CrossRef]
- Cardoso, D.J.; Arce, J.E.; Franciscon, L. Efeito da desrama em árvores de Pinus taeda L. e Pinus elliottii Engelm. na idade de corte raso. In Atualidades em Mensuração Florestal, 1st ed.; Corte, A.P.D., Sanquetta, C.R., Rodrigues, A.L., Machado, S.D.A., Netto, S.P., Filho, A.F., Nogueira, G.S., Eds.; Curitiba: Paraná, Brazil, 2014; pp. 265–271. [Google Scholar]
- Socha, J. A taper model for Norway spruce (Picea abies (L.) Karst.). Electron. J. Pol. Agric. Univ. 2002, 5, 3. [Google Scholar]
- Socha, J.; Kulej, M. Provenance-dependent variability of Abies grandis stem form under mountain conditions of Beskid Sądecki (Southern Poland). Can. J. For. Res. 2005, 35, 2539–2552. [Google Scholar] [CrossRef]
- Socha, J.; Kulej, M. Variation of the tree form factor and taper in European larch of Polish provenances tested under conditions of the Beskid Sądecki mountain range (Southern Poland). J. For. Sci. 2007, 53, 538–547. [Google Scholar] [CrossRef]
- Pressler, M.R. Das Gesetz der Stammbildung; Arnoldische Buchhandlung: Leipzig, Germany, 1865; 153p. [Google Scholar]
- Metzger, K. Die absoluten Schaftformzahlem der fichte. Mund. Forstl. Hefte. 1894, 6, 87–93. [Google Scholar]
- Brack, C. Stem Form and Taper. The Australian National University, 1997. [Online]. Available online: https://fennerschool-associated.anu.edu.au/mensuration/BrackandWood1998/SHAPE.HTM (accessed on 26 April 2023).
- McTague, J.P.; Weiskittel, A. Evolution, history, and use of stem taper equations: A review of their development, application, and implementation. Can. J. For. Res. 2021, 51, 210–235. [Google Scholar] [CrossRef]
- King, D.A. Tree form, height growth, and susceptibility to wind damage in Acer saccharum. Ecology 1986, 67, 980–990. [Google Scholar] [CrossRef]
- Niklas, K.J. Influence of tissue density-specific mechanical properties on the scaling of plant height. Ann. Bot. 1993, 72, 173–179. [Google Scholar] [CrossRef]
- Colgan, M.S.; Swemmer, T.; Asner, G.P. Structural relationships between form factor, wood density, and biomass in African savanna woodlands. Trees 2014, 28, 91–102. [Google Scholar] [CrossRef]
- Husch, B.; Beers, T.W.; Kershaw, J.A. Forest Mensuration, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; 443p. [Google Scholar]
- Luoma, V.; Saarinen, N.; Kankare, V.; Tanhuanpää, T.; Kaartinen, H.; Kukko, A.; Holopainen, M.; Hyyppä, J.; Vastaranta, M. Examining changes in stem taper and volume growth with two-date 3D point clouds. Forests 2019, 10, 382. [Google Scholar] [CrossRef]
- Peng, P.H.; Kuo, C.H.; Wei, C.H.; Hsieh, Y.T.; Chen, J.C. The relationship between breast height form factor and form quotient of Liquidambar formosana in the eastern part of Taiwan. Forests 2022, 13, 1111. [Google Scholar] [CrossRef]
- Pereira, J.E.S.; Barreto-Garcia, P.A.B.; Paula, A.D.; Lima, R.B.D.; Carvalho, F.F.D.; Nascimento, M.D.S.; Aragao, M.D.A. Form quotient in estimating caatinga tree volume. J. Sustain. For. 2021, 40, 508–517. [Google Scholar] [CrossRef]
- Kozak, A.; Munro, D.D.; Smith, J.H.G. Taper functions and their application in forest inventory. For. Chron. 1969, 45, 278–283. [Google Scholar] [CrossRef]
- Son, Y.M.; Kim, H.; Lee, H.Y.; Kim, C.M.; Kim, C.S.; Kim, J.W.; Joo, R.W.; Lee, K.H. Stand yield table and commercial timber volume of Eucalyptus pellita and Acacia mangium plantations in Indonesia. J. Korean For. Soc. 2010, 99, 9–15. [Google Scholar]
- Krisnawati, H.A. Compatible estimation model of stem volume and taper for Acacia mangium Willd. plantations. Indones. J. For. Res. 2016, 3, 49–64. [Google Scholar] [CrossRef]
- Methol, R.J. Comparisons of Approaches to Modelling Tree Taper, Stand Structure and Stand Dynamics in Forest Plantations. Ph.D. Thesis, University of Canterbury, Canterbury, New Zealand, 2001. [Google Scholar] [CrossRef]
- Gavrikov, V.L. Stem Surface Area in Modeling of Forest Stands; Springer: Cham, Switzerland, 2017; 100p. [Google Scholar] [CrossRef]
- Inoue, A.; Sato, M.; Shima, H. A new taper index based on form-factor: Application to three bamboo species (Phyllostachys spp.). Eur. J. For. Res. 2021, 140, 1533–1542. [Google Scholar] [CrossRef]
- Tiryana, T.; Khasanah, L.; Priyanto, P.; Rahaju, S.; Muhdin, M. Form factors and volume models for estimating tree bole volume of Mahogany at community forests in Central Java. Indones. J. For. Res. 2021, 8, 199–211. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, V.A.J. Non-linear regression models for timber volume estimation in natural forest ecosystem, southwest Nigeria. Res. J. For. 2007, 1, 40–54. [Google Scholar] [CrossRef]
- Da Silva, J.A.A.; Borders, B.E.; Brister, G.H. Estimating tree volume using a new form factor. Commonw. For. Rev. 1994, 73, 14–17. Available online: https://www.jstor.org/stable/42606989 (accessed on 21 December 2024).
- Prodan, M.; Peters, R.; Cox, F.; Real, P. Mensura Forestal; Serie Investigación y Educación en Desarrollo Sostenible A1/SC (IICA); GTZ/IICA: San José, Costa Rica, 1997; 586p. [Google Scholar]
- Philip, M.S. Measuring Tree and Forests, 2nd ed.; CAB International: Wallingford, UK, 1994; 310p. [Google Scholar]
- Kalantari, H.; Fallah, A.; Hodjati, S.M.; Parsakhoo, A. Determination of the most appropriate form factor equation for Cupresus sempervirence L. var horizentalis in the north of Iran. Adv. Appl. Sci. Res. 2012, 3, 644–648. [Google Scholar]
- Felipe, V.D.C.; Diogo, G.S.V.; Ronaldo, D. Artificial form factor equations for Tectona grandis in different spacings. Afr. J. Agric. Res. 2016, 11, 3554–3561. [Google Scholar] [CrossRef]
- Özbayram, A.K.; Çiçek, E. Influence of thinning on the stem shape of narrow-leaved ash (Fraxinus angustifolia Vahl.) trees. Forestist 2023, 73, 154–159. [Google Scholar] [CrossRef]
- Zobeiri, M. Forest Inventory; University of Tehran Press: Tehran, Iran, 2000; 401p. [Google Scholar]
- Petrin, R.; Bogdanov, K. Comparative investigations of the form factor for different tree species. Uniform average form factor. Manag. Sustain. Dev. 2017, 63, 1–6. [Google Scholar]
- Van Laar, A.; Akça, A. Forest Mensuration, 2nd ed.; Springer Science & Business Media: Dordrecht, The Netherlands, 2007; 383p. [Google Scholar]
- Oluwajuwon, T.V.; Hossain, M.S.; Ludjen, A.N.; Hasert, D.P.; Sitanggang, M.; Israel, R.; Offiah, C.J.; Alawode, G.L.; Ogana, F.N. Form factors and volume models for Falcataria moluccana in smallholder plantations, Central Kalimantan, Indonesia. Aust. For. 2024, 87, 101–113. [Google Scholar] [CrossRef]
- Gao, C.J. The Analysis of Tree Density Factor of Different Poplar Forest and the Development of Volume Table. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2017. [Google Scholar]
- Socha, J. Estimation of the effect of stand density on Scots pine stem form. Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 2007, 6, 59–70. [Google Scholar]
- Pérez, D.; Kanninen, M. Effect of thinning on stem form and wood characteristics of teak (Tectona grandis) in a humid tropical site in Costa Rica. Silva Fenn. 2005, 39, 217–225. [Google Scholar] [CrossRef]
- Dávila-Molina, D.E.; Sáenz-Romero, C.; Aguirre-Calderón, O.A.; Lopez-Toledo, L. Age contributes to volume estimation and form factor of Pinus pseudostrobus Lindley in commercial forest plantations from Western Mexico. J. Sustain. For. 2022, 42, 336–351. [Google Scholar] [CrossRef]
- Thakur, R.B. Determination of Form Factor of Major Tree Species of Parbat District (Sal, Chilaune, Katus, Salla & Miscellaneous Species); Livelihoods & Forestry Program: Parbat, Nepal, 2006; 30p. [Google Scholar]
- Baral, S.; Neumann, M.; Basnyat, B.; Gauli, K.; Gautam, S.; Bhandari, S.K.; Vacik, H. Form factors of an economically valuable Sal tree (Shorea robusta) of Nepal. Forests 2020, 11, 754. [Google Scholar] [CrossRef]
- Figueiredo, E.O.; Schroeder, R.; Papa, D.A. Fatores de Forma para 20 Espécies Florestais Comerciais da Amazônia. Technical Communiqué, 173; Embrapa Acre: Rio Branco, Brazil, 2009; p. 4. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/697548 (accessed on 21 December 2024).
- Shrestha, H.L.; Kafle, M.R.; Khanal, K.; Mandal, R.A. Developing local volume tables for three important tree species in Nawalparasi and Kapilvastu districts. Banko Janakari 2018, 27, 84–91. [Google Scholar] [CrossRef]
- Ardelina, A.; Tiryana, T.; Muhdin, M. Model volume pohon sengon untuk menilai kehilangan keuntungan petani hutan rakyat. J. Penelit. Hutan Tanam. 2015, 12, 131–139. [Google Scholar] [CrossRef]
- Wahjono, J.; Soemarna, K. Tabel isi pohon dan dolok jenis mahoni (Swietenia macrophylla King) di KPH Jember, Jawa Timur. Bul. Penelit. Hutan 1987, 493, 1–13. [Google Scholar]
- Pollanschütz, J. A New Method of Determining Stem Form Factor of Standing Trees; The Advisory Group of Forest Statisticians of the International Union of Forest Research Organizations: Stockholm, Sweden, 1965; pp. 7–17. [Google Scholar]
- Rosset, J. Temperate conifer forests of Bhutan: A review of forestry research activities until June, 1998. In RNR-RC Jakar. Special Publication No. 3. Research Extension and Irrigation Division; Ministry of Agriculture, Royal Government of Bhutan: Thimphu, Bhutan, 1999; p. 95. [Google Scholar]
- Näslund, M. Funktionen und Tabellen zur Kubierung stehender Baume, Kiefer, Fichte und Birke in Nordschweden; Meddelanden från Statens Skogsforskningsinstitut: Stockholm, Sweden, 1940; 32p. [Google Scholar]
- Näslund, M. Functions and Tables for Computing the Cubic Volume of Standing Trees. Pine, Spruce and Birch in Southern Sweden and in the Whole of Sweden. Rep. For. Res. Inst. Swed. 1947, 36, 68. [Google Scholar]
- Meyer, H.A. Forest Mensuration; Penn’s Valley Publishers, Inc. State College: Harrisburg, PA, USA, 1953; 357p. [Google Scholar]
- Evert, F. Estimating stand volume by measuring form class without measuring diameters. For. Sci. 1969, 15, 145–148. [Google Scholar]
- Endalamaw, B.; Nigatu, A.; Ferede, T.; Kasa, G. Developing a form factor function for Acacia decurrens in Southwestern Amhara National Regional State, Ethiopia. Berhan Int. Res. J. Sci. Humanit. 2019, 3, 126–138. [Google Scholar] [CrossRef]
- Gezahagn, T.T. Development of Form Factor and Height-Diameter Functions for Selected Tree Species in the Amhara Region, Ethiopia. Master’s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2015. [Google Scholar]
- Heger, L. A trial of Hohenadl’s method of stem form and stem volume estimation. For. Chron. 1965, 41, 466–475. [Google Scholar] [CrossRef]
- Mohamed, N.H. Determining the best form factor equation for some tree species commonly used in Egypt to fit the actual volume. Alex. J. Agric. Sci. 2016, 61, 83–91. [Google Scholar] [CrossRef]
- Chapagain, T.R.; Sharma, R.P. Modeling form factors for sal (Shorea robusta Gaertn.) using tree and stand measures, and random effects. For. Ecol. Manag. 2021, 482, 118807. [Google Scholar] [CrossRef]
- Sendi, M.R.N.; Navroodi, I.H.; Poorbabaei, H.; Milan, M.S.; Bakhshandeh, B. Determination of lime tree (Tilia begonifolia Stev.) stems form based on quantitative parameters (Study area: Shafaroud forests of Guilan province, Iran). Folia For. Pol. A. 2014, 56, 165–170. [Google Scholar] [CrossRef]
- Sanquetta, C.R.; Dolci, M.D.C.; Corte, A.P.D.; Sanquetta, M.N.I.; Pelissari, A.L. Form factors vs. regression models in volume estimation of Pinus taeda L. stem. Científica 2017, 45, 175–181. [Google Scholar] [CrossRef]
- Fang, S.; Liu, Y.; Yue, J.; Tian, Y.; Xu, X. Assessments of growth performance, crown structure, stem form and wood property of introduced poplar clones: Results from a long-term field experiment at a lowland site. For. Ecol. Manag. 2021, 479, 118586. [Google Scholar] [CrossRef]
- West, P.W. Stand measurement. In Tree and Forest Measurement, 3rd ed.; Springer: Cham, Switzerland, 2015; pp. 71–96. [Google Scholar] [CrossRef]
- Brooks, J.R.; Jiang, L.; Ozçelik, R. Compatible stem volume and taper equations for Brutian pine, Cedar of Lebanon, and Cilicica fir in Turkey. For. Ecol. Manag. 2008, 256, 147–151. [Google Scholar] [CrossRef]
- Santos, F.M.; Terra, G.; Chaer, G.M.; Monte, M.A. Modeling the height–diameter relationship and volume of young African mahoganies established in successional agroforestry systems in northeastern Brazil. New For. 2019, 50, 389–407. [Google Scholar] [CrossRef]
- Evert, F. Use of form factor in tree volume estimation. J. For. 1969, 67, 126–128. [Google Scholar] [CrossRef]
- Campos, J.C.C.; Leite, H.G. Mensuração Florestal: Perguntas e Respostas; Editora UFV: Viçosa, Brazil, 2006; 470p. [Google Scholar]
- Stinglwagner, G.; Haseder, I.; Erlbeck, R. Das Kosmos Wald- und Forstlexikon: Mit über 17.000 Stichwörtern; Kosmos: Stuttgart, Germany, 2016; 1056p. [Google Scholar]
- Bruce, D.; Curtis, R.O.; Vancoevering, C. Development of a system of taper and volume tables for red alder. For. Sci. 1968, 14, 339–350. [Google Scholar] [CrossRef]
- Miranda, D.L.C.; Junior, V.B.; Gouveia, D.M. Fator de forma e equações de volume para estimativa volumétrica de árvores em plantio de Eucalyptus urograndis. Sci. Plena 2015, 11, 1–8. [Google Scholar]
- Sanquetta, C.R.; Dolci, M.; Corte, A.P.; Sanquetta, M.; Pelissari, A. Estimação de volumes de Araucaria angustifolia (Bertol.) O. Kuntze por fatores de forma em classes diamétricas e modelos de regressão. Encicl. Biosf. 2016, 13, 588–597. [Google Scholar] [CrossRef]
- Pertille, C.T.; Sanquetta, C.R.; Nicoletti, M.F.; Topanotti, L.R. Volume prediction through form factor and regression models by age class for Pinus taeda L. Adv. For. Sci. 2018, 5, 431–436. [Google Scholar] [CrossRef]
- DoF. Community Forest Inventory Guideline; Ministry of Forests and Soil Conservation, Department of Forests (DoF): Kathmandu, Nepal, 2004; 14p.
- Krisnawati, H.; Adinugroho, W.C.; Imanuddin, R. Monograph: Allometric Models for Estimating Tree Biomass at Various Forest Ecosystem Types in Indonesia; Research and Development Center for Conservation and Rehabilitation, Forestry Research and Development Agency, Ministry of Forestry: Bogor, Indonesia, 2012; 119p. [Google Scholar]
- Baral, S.; Gautam, A.P.; Vacik, H. Ecological and economical sustainability assessment of community forest management in Nepal: A reality check. J. Sustain. For. 2018, 37, 820–841. [Google Scholar] [CrossRef]
- Henry, M.; Besnard, A.; Asante, W.A.; Eshun, J.; Adu-Bredu, S.; Valentini, R.; Bernoux, M.; Saint-André, L. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For. Ecol. Manag. 2010, 260, 1375–1388. [Google Scholar] [CrossRef]
- Schikowski, A.B.; Corte, A.P.; Ruza, M.S.; Sanquetta, C.R.; Montano, R.A. Modeling of stem form and volume through machine learning. An. Acad. Bras. Ciênc. 2018, 90, 3389–3401. [Google Scholar] [CrossRef]
- Yang, S.I.; Burkhart, H.E. Robustness of parametric and nonparametric fitting procedures of tree-stem taper with alternative definitions for validation data. J. For. 2020, 118, 576–583. [Google Scholar] [CrossRef]
- Souza, D.V.; Nievola, J.C.; Corte, A.P.; Sanquetta, C.R. k-Nearest neighbor and linear regression in the prediction of the artificial form factor. Floresta 2020, 50, 1669–1678. [Google Scholar] [CrossRef]
Stem Geometric Form | Stem Form Factor |
---|---|
Cylinder | 1.00 (>0.9) |
Neiloid | 0.25 (0.2–0.3) |
Conoid | 0.33 (0.3–0.45) |
Quadratic paraboloid | 0.50 (0.45–0.55) |
Cubic paraboloid | 0.60 (0.55–0.65) |
S/N | Form Factor Function | Regression Equation | Source |
---|---|---|---|
1 | Large Swedish’s | [72] | |
2 | Short Swedish’s | [71] | |
3 | Meyer’s | [73] | |
4 | Pollanschütz’s | [69] | |
5 | F. Evert’s Australian | [74] | |
6 | Rosset’s | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluwajuwon, T.V.; Ogbuka, C.E.; Ogana, F.N.; Hossain, M.S.; Israel, R.; Lee, D.J. Describing and Modelling Stem Form of Tropical Tree Species with Form Factor: A Comprehensive Review. Forests 2025, 16, 29. https://doi.org/10.3390/f16010029
Oluwajuwon TV, Ogbuka CE, Ogana FN, Hossain MS, Israel R, Lee DJ. Describing and Modelling Stem Form of Tropical Tree Species with Form Factor: A Comprehensive Review. Forests. 2025; 16(1):29. https://doi.org/10.3390/f16010029
Chicago/Turabian StyleOluwajuwon, Tomiwa V., Chioma E. Ogbuka, Friday N. Ogana, Md. Sazzad Hossain, Rebecca Israel, and David J. Lee. 2025. "Describing and Modelling Stem Form of Tropical Tree Species with Form Factor: A Comprehensive Review" Forests 16, no. 1: 29. https://doi.org/10.3390/f16010029
APA StyleOluwajuwon, T. V., Ogbuka, C. E., Ogana, F. N., Hossain, M. S., Israel, R., & Lee, D. J. (2025). Describing and Modelling Stem Form of Tropical Tree Species with Form Factor: A Comprehensive Review. Forests, 16(1), 29. https://doi.org/10.3390/f16010029