Optimizing Acidic Reductive Leaching for Lithium Recovery: Enhancing Sustainable Lithium Supply for Energy Markets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Material
2.1.1. Mechanical Processing of Spent Li-Ion Batteries
- External plastic casing (37.2 g);
- Individual cylindrical cells (46.1 g; each battery contained 8 cells);
- Plastics, foils, and paper (Σ 0.9 g);
- Wires and cables (1.2 g);
- Metal components (4.8 g);
- Printed circuit boards (4.1 g).
XRD Analysis of Battery Mass
SEM/EDS Analysis of the Investigated Battery Mass
Microwave Mineralization of Battery Mass
2.2. Research Methodology
2.2.1. Acid Leaching of Paramagnetic Fraction
2.2.2. Parameters for Acidic Non-Reductive Leaching
- leaching agent: 1.50 M, 3.25 M, and 5.00 M formic acid (CH2O2);
- initial leaching temperature: 25.0 °C, 40.0 °C, and 55.0 °C;
- leaching time: 30 min, 75 min, and 120 min;
- solid-to-liquid phase ratio: 1:5.0, 1:7.5, and 1:10 (s/L = s—mass of the paramagnetic fraction/l—volume of leaching agent);
- mixing speed: 500 rpm.
2.2.3. Parameters of Acidic Reductive Leaching
- leaching agent: 5.00 M formic acid (CH2O2);
- initial temperature (Tinit.) = 55 °C;
- leaching time (t) = 120 min;
- solid-to-liquid ratio (s/L) = 1/10;
- mixing speed = 500 rpm.
2.2.4. Process of Acidic Non-Reductive and Reductive Leaching
3. Results
4. Discussion
5. Conclusions
- The leaching processes for the paramagnetic fraction (battery mass) derived from mechanically processed spent lithium-ion cells can be effectively conducted using formic acid with the addition of a novel (previously unexamined) reducing agent composed of glutaric acid and hydrogen peroxide. The recovery rates for the analyzed metal cations are as follows: cobalt (Co)—31.00%, lithium (Li)—68.40%, aluminum (Al)—100%, and copper (Cu)—12.89%.
- The development of modular hydrometallurgical recycling technologies enables the rapid adjustment of process parameters to accommodate variations in the chemical composition and quantity of battery waste streams. Unlike thermal methods, these technologies offer greater flexibility and scalability, making them better suited for the dynamic nature of evolving waste profiles in lithium-ion battery recycling.
- Designers and researchers of new lithium and non-lithium batteries must prioritize eco-design principles to enhance sustainability. Key focus areas include ensuring reusability to extend product lifecycles, minimizing the presence of hazardous substances to address environmental and recycling challenges, promoting energy efficiency and resource conservation during production and use, and reducing the carbon and environmental footprint of batteries throughout their lifecycle.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wolters, L.; Brusselaers, J. The energy transition paradox: How lithium extraction puts pressure on environment, society, and politics. Extract. Ind. Soc. 2024, 19, 101498. [Google Scholar] [CrossRef]
- Massoud, M.; Vega, G.; Subburaj, A.; Partheepan, J. Review on recycling energy resources and sustainability. Heliyon 2023, 9, e15107. [Google Scholar] [CrossRef]
- Kullmann, F.; Markewitz, P.; Kotzur, L.; Stolten, D. The value of recycling for low-carbon energy systems—A case study of Germany’s energy transition. Energy 2022, 256, 124660. [Google Scholar] [CrossRef]
- Stephan, A.; Anadon, L.D.; Hoffmann, V.H. How has external knowledge contributed to lithium-ion batteries for the energy transition? iScience 2021, 24, 101995. [Google Scholar] [CrossRef] [PubMed]
- Columbia University Center on Global Energy Policy. Lithium in the Energy Transition: Roundtable Report. 2025. Available online: https://www.energypolicy.columbia.edu/publications/lithium-in-the-energy-transition-roundtable-report/ (accessed on 10 January 2025).
- Tabelin, C.B.; Dallas, J.; Casanova, S.; Pelech, T.; Bournival, G.; Saydam, S.; Canbulat, I. Towards a low-carbon society: A review of lithium resource availability challenges and innovations in mining, extraction and recycling, and future perspectives. Miner. Eng. 2021, 163, 106743. [Google Scholar] [CrossRef]
- Chandrasekharam, D.; Sener, M.F.; Recepoglu, Y.K.; Isik, T.; Demir, M.M.; Baba, A. Lithium: An Energy transition element, its role in the future Energy demand and carbon emissions mitigation strategy. Geotechrmics 2024, 119, 102959. [Google Scholar] [CrossRef]
- Roy, J.J.; Phuong, D.M.; Verma, V.; Chaudhary, R.; Carboni, M.; Meyer, D.; Cao, B.; Srinivasan, M. Direct recycling of Li-ion batteries from cel to pack level: Challenges and prospects on technology, scalability, sustainability, and economics. Carbon Energy 2024, 6, e492. [Google Scholar] [CrossRef]
- USGS. Available online: https://pubs.usgs.gov/periodicals (accessed on 23 November 2024).
- Alera, A.C.; Benitez, J.P.; Fernandez, R.J.; Pascual, C.K.; Policarpio, F.; Lopez, E.C.R. Recent Advances in Lithium Extraction. Eng. Proc. 2024, 67, 52. [Google Scholar] [CrossRef]
- Li, P.; Luo, S.; Zhang, L.; Liu, Q.; Wang, Y.; Lin, Y.; Xu, X.; Guo, J.; Cheali, P.; Xia, X. Progress, challenges, and prospects of spent lithium-ion batteries recycling: A review. J. Energy Chem. 2024, 89, 144–171. [Google Scholar] [CrossRef]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Alessia, A.; Alessandro, B.; Maria, V.-G.; Carlos, V.-A.; Francesca, B. Challenges for sustainable lithium supply: A critical review. J. Clean. Prod. 2021, 300, 126954. [Google Scholar] [CrossRef]
- Visual Capitalists. Visualizing 25 Years of Lithium Production, by Country. Available online: https://www.visualcapitalist.com/visualizing-25-years-of-lithium-production-by-country/ (accessed on 19 December 2024).
- Ambrose, H.; Kendall, A. Understanding the future of lithium. Part 2, temporally and spatially resolved life-cycle assessment modeling. J. Ind. Ecol. 2020, 24, 90–100. [Google Scholar] [CrossRef]
- Statista. Consumer Electronics. Available online: https://www.statista.com/outlook/cmo/consumer-electronics/worldwide#revenue (accessed on 19 December 2024).
- Eurostat. Waste Statistics—Electrical and Electronic Equipment. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics_-_electrical_and_electronic_equipment (accessed on 19 December 2024).
- Ravi, S.S.; Aziz, M. Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives. Energies 2022, 15, 589. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Mierlo, J.V.; Berecibar, M. A comprehensive review of stationary Energy stroage devices for large scale renewable Energy sources grid integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, Y.-M.; Yuan, B.; Fan, M.; Meng, Q.; Guo, Y.-G.; Wan, L.-J. Solid-state lithium-ion batteries for grid energy storage: Opportunities and challenges. Sci. China Chem. 2024, 67, 43–66. [Google Scholar] [CrossRef]
- European Council, Council of the European Union. Fit for 55. Available online: https://www.consilium.europa.eu/en/policies/fit-for-55/ (accessed on 19 December 2024).
- European Comission. Critical Raw Materials. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 19 December 2024).
- Carrara, S.; Bobba, S.; Blagoeva, D.; Alves Dias, P.; Cavalli, A.; Georgitzikis, K.; Grohol, M.; Itul, A.; Kuzov, T.; Latunussa, C.; et al. Supply Chain Analysis and Material Demand Forecast in Strategic Technologies and Sectors in the EU—A Foresight Study; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Regulation (EU) 2024/1252 of the European Parliament and of the Council of 11 April 2024 Establishing a Framework for Ensuring a Secure and Sustainable Supply of Critical Raw Materials and Amending Regulations (EU) No 168/2013, (EU) 2018/858, (EU) 2018/1724 and (EU) 2019/1020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L_202401252 (accessed on 19 December 2024).
- Statista. Major Countries in Worldwide Lithium Mine Production in 2023. Available online: https://www.statista.com/statistics/268789/countries-with-the-largest-production-output-of-lithium/ (accessed on 19 December 2024).
- U.S. Geological Survey. Lithium. Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-lithium.pdf (accessed on 24 November 2024).
- Fasel, D.; Tran, M.Q. Availability of lithium in the context of future D–T fusion reactors. Fusion Eng. Des. 2005, 75–79, 1163–1168. [Google Scholar] [CrossRef]
- Ezama, I.; de los Hoyos, C.R.; Cortegoso, P.; Braun, T. Direct Extraction Lithium Processes: The challenges of Spent Brine Disposal. Available online: https://www.srk.com/en/publications/direct-extraction-lithium-processes-the-challenges-of-spent-brine-disposal (accessed on 19 December 2024).
- Christmann, P.; Gloaguen, E.; Labbé, J.-F.; Melleton, J.; Piantone, P. Global Lithium Resources and Sustainability Issues. In Lithium Process Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–40. [Google Scholar] [CrossRef]
- Hamzaoui, A.H.; M’Nif, A.; Hammi, H.; Rokbani, R. Contribution to the lithium recovery from brine. Desalination 2003, 158, 221–224. [Google Scholar] [CrossRef]
- Dewulf, J.; Van der Vorst, G.; Denturck, K.; Van Langenhove, H.; Ghyoot, W.; Tytgat, J.; Vandeputte, K. Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour. Conserv. Recycl. 2010, 54, 229234. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chem. Rev. 2020, 120, 7020–7063. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Roy, S.; Vajtai, R. Emerging Processes for Sustainable Li-Ion Battery Cathode Recycling. Small 2024, 2400557. [Google Scholar] [CrossRef]
- Cerrillo-Gonzalez, M.d.M.; Villen-Guzman, M.; Vereda-Alonso, C.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Towards Sustainable Lithium-Ion Battery Recycling: Advancements in Circular Hydrometallurgy. Processes 2024, 12, 1485. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Sawangphruk, M. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives. Glob. Chall. 2023, 7, 2200212. [Google Scholar] [CrossRef] [PubMed]
- Jenis, P.; Zhang, T.; Ramasubramanian, B.; Lin, S.; Rayavarapu, P.R.; Yu, J.; Ramakrishna, S. Recnet progres and hurdles in cathode recycling for Li-ion batteries. Circualr Econ. 2024, 3, 100087. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, S.; Park, S.; Lee, J.; Bae, J.; Kim, D.; Hyeoncheol, J.; Ban, S.; Lee, H.; Kim, Y.; et al. A comprehensive review on the recovery of cathode active materials via direct recycling from spent Li-ion batteries. Renew. Sustain. Energy Rev. 2023, 187, 113693. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, H.; Tan, N.; Zhu, M.; Tan, W.; Daramola, D.; Gu, T. Advances in bioleaching of waste lithium batteries under metal ion stress. Bioresour. Bioprocess. 2023, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.K.; Zhang, B.; Tran, P.T.M.; Zhang, J.; Balasubramanian, R. Recycling of spent lithium-ion batteries for sustainable future: Recent advancements. Chem. Soc. Rev. 2024, 53, 5552–5592. [Google Scholar] [CrossRef] [PubMed]
- Golmohammadzadeh, R.; Faraji, F.; Jong, B.; Pozo-Gonzalo, C.; Banerjee, P.C. Current challenges and future opportunities toward recycling of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2022, 159, 112202. [Google Scholar] [CrossRef]
- Chen, X.; Kang, D.; Cao, L.; Li, J.; Zhou, T.; Ma, H. Separation and recovery of valuable metals from spent lithium-ion batteries: Simultaneous recovery of Li and Co in a single step. Sep. Purif. Technol. 2019, 210, 690–697. [Google Scholar] [CrossRef]
- Chen, X.; Guo, C.; Ma, H.; Li, J.; Zhou, T.; Cao, L.; Kang, D. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Manag. 2018, 75, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Meshram, P.; Abhilash Pandey, B.D.; Mankhand, T.R.; Deveci, H. Extraction of metals from spent lithium-ion batteries—Role of acid, reductant, and process intensification in recycling. Indian J. Chem. Technol. 2018, 25, 368–375. [Google Scholar]
- Golmohammadzadeh, R.; Rashchi, F.; Vahidi, E. Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Manag. 2017, 64, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Gao, W.; Zhang, X.; He, M.; Lin, X.; Cao, H.; Zhang, Y.; Sun, Z. Spent lithium-ion battery recycling—Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manag. 2017, 60, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Pinna, E.G.; Ruiz, M.C.; Ojeda, M.W.; Rodriguez, M.H. Cathodes of spent Li-ion batteries: Dissolution with phosphoric acid and recovery of lithium and cobalt from leach liquors. Hydrometallurgy 2017, 167, 66–71. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, Y.; Dong, P. Use of glucose as reductant to recover Co from spent lithium-ion batteries. Waste Manag. 2017, 64, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.P.; Prabaharan, G.; Kumar, L. Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. J. Clean. Prod. 2017, 147, 37–43. [Google Scholar] [CrossRef]
- Willner, J.; Fornalczyk, A.; Gajda, B.; Figlus, T.; Świeboda, A.; Węgrzyński, D.; Mlonka, A.; Perenc, B.; Kander, M. Direct Sonochemical Leaching of Li, Co, Ni, and Mn from Mixed Li-Ion Batteries with Organic Acids. Energies 2024, 17, 4055. [Google Scholar] [CrossRef]
- Elemental Strategic Metals Sp. z o.o. Available online: https://elementalbatteries.com/ (accessed on 27 August 2024).
- Sobianowska-Turek, A.; Łoś, P.; Fornalczyk, A.; Zygmunt, M. Potential market value of electrolyte condensate recovered from LIBs mechanical treatment. Gas Water Sanit. Eng. 2023, 1, 21–22. [Google Scholar] [CrossRef]
- Eneris B&R (Batteries & Recycling). Available online: https://eneris.pl/informacje-dla-prasy/aktualnosci/br (accessed on 27 August 2024).
- Botree. Available online: https://botree.tech/Home-index.html (accessed on 21 November 2024).
- Lin, X.; Wang, X.; Liu, G.; Zhang, G. Recycling of Power Lithium-Ion Batteries: Technology, Equipment, and Policies; Wiley-VCH: Hoboken, NJ, USA, 2022; ISBN 3527351086. [Google Scholar]
- PN EN 13925-1: 2007; Non-Destructive Testing—X-RAY Diffraction from Polycrystalline and Amorphous Material—Part 1: General Principles. Polish Committee for Standardization: Warsaw, Poland, 2013.
- Yao, Y.; Zhu, M.; Zhao, Z.; Tong, B.; Fan, Y.; Hua, Z. Hydrometallurgical Processes for Recycling Spent Lithium-Ion Batteries: A Critical Review. ACS Sustain. Chem. Eng. 2018, 6, 13611–13627. [Google Scholar] [CrossRef]
- Dutta, D.; Kumari, A.; Panda, R.; Jha, S.; Gupta, D.; Goel, S.; Jha, M.K. Close loop separation process for the recovery of Co, Cu, Mn, Fe and Li from spent lithium-ion batteries. Sep. Purif. Technol. 2018, 200, 327–334. [Google Scholar] [CrossRef]
- Yang, L.; Cao, Y.; Shao, J.; Song, C.; Zhang, Z.; Liu, S.; Li, C.; Zhu, D.; Xing, H.; Liu, F.; et al. An innovative strategy for spent LiCoO2 battery recycling based on chemical looping complementary reduction. Fuel 2024, 355, 129426. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Li, H.; Fu, Z.; Zhang, G.; Zhang, H.; Wang, G.; Zhang, Y. Green recycling of spent LiCoO2 cathodes using a water-based deep eutectic solvent. Sep. Purif. Technol. 2025, 354, 128808. [Google Scholar] [CrossRef]
- Wang, J.; Jia, K.; Ma, J.; Liang, Z.; Zhuang, Z.; Zhao, Y.; Li, B.; Zhou, G.; Cheng, H.-M. Sustainable upcycling of spent LiCoO2 to an ultra-stable battery cathode at high voltage. Nat. Sustain. 2023, 6, 797–805. [Google Scholar] [CrossRef]
- Nanores Sp. z o.o. Sp.k. Available online: https://lab.nanores.pl/ (accessed on 21 November 2024).
- Santana, I.L.; Moreira, T.F.M.; Lelis, M.F.F.; Freitas, M.B.J.G. Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Mater. Chem. Phys. 2017, 190, 38–44. [Google Scholar] [CrossRef]
- Pietrzyk-Thel, P.; Osiał, M.; Pręgowska, A.; Abramowicz, M.; Nguyen, T.P.; Urbańska, W.; Giersig, M. SPIONs doped with cobalt from the Li-ion battery acid leaching waste as a photocatalyst for tetracycline degradation—Synthesis, characterization, DFT studies, and antibiotic treatment. Desalination Water Treat. 2023, 305, 155–173. [Google Scholar] [CrossRef]
- Sobianowska-Turek, A.; Urbańska, W.; Janicka, A.; Zawiślak, M.; Matla, J. The Necessity of Recycling of Waste Li-Ion Batteries Used in Electric Vehicles as Objects Posing a Threat to Human Health and the Environment. Recycling 2021, 6, 35. [Google Scholar] [CrossRef]
- Koech, A.K.; Mwandila, G.; Mulolani, F.; Mwaanga, P. Lithium-ion battery fundamentals and exploration of cathode materials: A review. South Afr. J. Chem. Eng. 2024, 50, 321–339. [Google Scholar] [CrossRef]
- Sahua, S.; Devi, N. Two-step leaching of spent lithium-ion batteries and effective regeneration of critical metals and graphitic carbon employing hexuronic acid. RSC Adv. 2023, 13, 7193. [Google Scholar] [CrossRef] [PubMed]
- Leszczyńska-Sejda, K.; Chmielarz, A.; Kopyto, D.; Ochmański, M.; Benke, G.; Palmowski, A.; Sobianowska-Turek, A.; Łoś, P.; Fornalczyk, A.; Zygmunt, M.; et al. An Innovative Method of Leaching of Battery Masses Produced in the Processing of Li-Ion Battery Scrap. Appl. Sci. 2024, 14, 397. [Google Scholar] [CrossRef]
- Sahu, S.; Agrawala, M.; Patra, S.R.; Devi, N. Synergistic Approach for Selective Leaching and Separation of Strategic Metals from Spent Lithium-Ion Batteries. ACS Omega 2024, 9, 10556–10565. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Marthi, R.; Mahandra, H.; Chae, S.; Traversy, M.; Sadri, F.; Choi, Y.; Ghahreman, A. Direct selective leaching of lithium from industrial-grade black mass of waste lithium-ion batteries containing LiFePO4 cathodes. Waste Manag. 2023, 171, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Traversy, M.; Choi, Y.; Ghahreman, A. A novel process for multi-stage continuous selective leaching of lithium from industrial-grade complicated lithium-ion battery waste. Sci. Total Environ. 2024, 909, 168533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yuan, X.; Tay, C.Y.; He, Y.; Wang, H.; Duan, C. Selective recycling of lithium from spent lithium-ion batteries by carbothermal reduction combined with multistage leaching. Sep. Purif. Technol. 2023, 314, 123555. [Google Scholar] [CrossRef]
- Balachandran, S.; Forsberg, K.; Lemaître, T.; Vieceli, N.; Gabriele Lombardo, G.; Petranikova, M. Comparative Study for Selective Lithium Recovery via Chemical Transformations during Incineration and Dynamic Pyrolysis of EV Li-Ion Batteries. Metals 2021, 11, 1240. [Google Scholar] [CrossRef]
- Łoś, P.; Łabuz, A.; Sobianowska-Turek, A.; Fornalczyk, A.; Zygmunt, M.; Janosz, M. Potentiodynamic copper electrowinning. Laboratory and pilot scale tests. Przem. Chem. 2024, 103, 130–135. [Google Scholar] [CrossRef]
- Ochromowicz, K.; Zabłocka-Malicka, M.; Chojnacka, I.; Worsa-Kozak, M. Assessing the Viability of Integrating Evaporation and Solvent Extraction Systems for Lithium Recovery from Low-Grade Brines. Processes 2024, 12, 1453. [Google Scholar] [CrossRef]
- Kopper Chemical Industry Corp., Ltd. Available online: https://www.kopperchem.com (accessed on 8 November 2024).
- Solvay. Available online: https://www.syensqo.com/en/product/cyanex-936p-extractant (accessed on 8 November 2024).
- Sobianowska-Turek, A.; Grudniewska, K.; Maciejewski, P.; Gawlik-Kobylińska, M. Removal of Zn(II) and Mn(II) by Ion Flotation from Aqueous Solutions Derived from Zn-C and Zn-Mn(II) Batteries Leaching. Energies 2021, 14, 1335. [Google Scholar] [CrossRef]
Source | Advantages (+) and Disadvantages (−) | Ref. |
---|---|---|
Hard-rock and clay mining, extraction and concentration | well-known and highly developed mining technologies possibility of lithium carbonate or lithium hydroxide production by-products recovery, e.g., tin and tantalum compounds faster processing than brine mining profitability depending on deposit depth and size, expensive exploitation of vein- and lens-type deposits mechanical pretreatment of mined material | [27] [6] [7] |
Li-bearing brine mining, extraction, and concentration | simple mining technology by-products recovery, e.g., phosphate and boron compounds cheaper than hard-rock mining technologies initial product only in form of lithium carbonate strong interference of Mg2+ in the Li recovery climatic restrictions regarding sunlight and precipitation intensity large area demand for evaporation ponds spent brine tailings management | [6] [28] [29] [30] |
Recovery from spent batteries | protection of primary Li resources environmental benefits, e.g., proper waste management, emissions, and landfilling reduction legislative support sustainable development and circular economy implementation resource availability is dependent on spent battery waste collection levels high fire hazard during batteries storing and processing, discharging and mechanical pretreatment before Li recovery recovery methods in development phase | [31] [32] |
Element | Mass [%] | Mass Norm. [%] | Atom [%] | Abs.error [%] | Rel.error [%] |
---|---|---|---|---|---|
Oxygen | 17.68 | 18.59 | 28.13 | 1.94 | 10.95 |
Cobalt | 53.03 | 55.73 | 22.90 | 1.34 | 2.54 |
Carbon | 22.69 | 23.85 | 48.09 | 2.69 | 11.84 |
Calcium | 0.09 | 0.10 | 0.06 | 0.03 | 30.68 |
Phosphorus | 0.26 | 0.27 | 0.21 | 0.04 | 13.96 |
Iron | 0.92 | 0.97 | 0.42 | 0.05 | 5.27 |
Copper | 0.47 | 0.49 | 0.19 | 0.04 | 7.93 |
Sum | 95.14 | 100.00 | 100.00 |
No. Expt. | Leaching Parameters | Leaching Efficiency of Metals, % | ||||||
---|---|---|---|---|---|---|---|---|
T, °C | t, min | s/L, g/mL | C, M | Co | Li | Al | Cu | |
1 | 25 | 120 | 1/10 | 5.00 | 1.72 | 21.38 | 0.00 | 73.98 |
2 | 25 | 120 | 1/5 | 1.50 | 2.23 | 18.92 | 0.00 | 46.71 |
3 | 25 | 30 | 1/5 | 5.00 | 0.71 | 18.07 | 0.00 | 73.76 |
4 | 55 | 120 | 1/10 | 5.00 | 4.11 | 24.98 | 0.00 | 76.62 |
5 | 25 | 120 | 1/5 | 5.00 | 4.20 | 20.46 | 0.00 | 49.84 |
6 | 55 | 120 | 1/5 | 1.50 | 1.40 | 18.33 | 0.00 | 74.71 |
7 | 55 | 120 | 1/10 | 1.50 | 2.80 | 21.20 | 0.00 | 78.96 |
8 | 25 | 120 | 1/10 | 1.50 | 1.42 | 18.47 | 0.00 | 72.77 |
9 | 25 | 30 | 1/10 | 1.50 | 0.57 | 16.65 | 0.00 | 72.92 |
10 | 55 | 30 | 1/10 | 5.00 | 3.58 | 20.70 | 0.00 | 74.08 |
11 | 25 | 30 | 1/10 | 5.00 | 0.90 | 16.57 | 0.00 | 75.21 |
12 | 55 | 30 | 1/5 | 5.00 | 1.87 | 17.95 | 0.00 | 80.79 |
13 | 25 | 30 | 1/5 | 1.50 | 0.61 | 14.62 | 0.00 | 19.45 |
14 | 55 | 30 | 1/10 | 1.50 | 1.35 | 17.40 | 0.00 | 72.51 |
15 | 40 | 75 | 1/7.5 | 3.25 | 2.63 | 17.74 | 0.00 | 54.03 |
16 | 40 | 75 | 1/7.5 | 3.25 | 1.76 | 17.73 | 0.00 | 76.66 |
17 | 40 | 75 | 1/7.5 | 3.25 | 1.36 | 15.74 | 0.00 | 71.05 |
18 | 55 | 120 | 1/5 | 5.00 | 3.79 | 17.91 | 0.00 | 75.10 |
19 | 55 | 30 | 1/5 | 1.50 | 0.82 | 12.86 | 0.00 | 69.60 |
No. Expt | Leaching Parameters | Leaching Efficiency of Metals, % | ||||||
---|---|---|---|---|---|---|---|---|
T, °C | t, min | s/L, g/mL | C, M | Co | Li | Al | Cu | |
Step 1 | ||||||||
CH2O2 + C6H10O4 | ||||||||
A * | 55 | 120 | 1/10 | 5.00 | 4.37 | 23.13 | X ** | X |
CH2O2+ C5H8O4 | ||||||||
B | 55 | 120 | 1/10 | 5.00 | 0.70 | 16.38 | X | X |
CH2O2 + C4H6O4 | ||||||||
C * | 55 | 120 | 1/10 | 5.00 | 5.28 | 16.55 | X | X |
Step 2 | ||||||||
CH2O2 | ||||||||
D | 85 | 120 | 1/10 | 5.00 | 12.03 | 36.14 | 100.0 | 28.20 |
CH2O2 + C5H8O4 | ||||||||
E | 85 | 120 | 1/10 | 5.00 | 23.38 | 59.63 | 61.06 | 47.00 |
CH2O2 + H2O2 | ||||||||
F | 85 | 120 | 1/10 | 5.00 | 9.40 | 27.29 | 52.64 | 86.49 |
CH2O2 + C5H8O4 + H2O2 | ||||||||
G | 85 | 120 | 1/10 | 5.00 | 31.00 | 68.40 | 100.0 | 12.89 |
Element | Mass [%] | Mass Norm. [%] | Atom [%] | Abs.error [%] | Rel.error [%] |
---|---|---|---|---|---|
Oxygen | 35.35 | 33.93 | 60.14 | 3.73 | 10.55 |
Cobalt | 17.17 | 16.48 | 21.93 | 1.84 | 10.71 |
Carbon | 50.88 | 48.84 | 17.64 | 1.29 | 2.54. |
Iron | 0.78 | 0.75 | 0.29 | 0.04 | 5.73 |
Sum | 104.19 | 100.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobianowska-Turek, A.; Zielińska, A.; Urbańska, W.; Mielniczek, A.; Fornalczyk, A.; Pawlak, S.; Małysa, T.; Cebulski, J. Optimizing Acidic Reductive Leaching for Lithium Recovery: Enhancing Sustainable Lithium Supply for Energy Markets. Energies 2025, 18, 398. https://doi.org/10.3390/en18020398
Sobianowska-Turek A, Zielińska A, Urbańska W, Mielniczek A, Fornalczyk A, Pawlak S, Małysa T, Cebulski J. Optimizing Acidic Reductive Leaching for Lithium Recovery: Enhancing Sustainable Lithium Supply for Energy Markets. Energies. 2025; 18(2):398. https://doi.org/10.3390/en18020398
Chicago/Turabian StyleSobianowska-Turek, Agnieszka, Amelia Zielińska, Weronika Urbańska, Anna Mielniczek, Agnieszka Fornalczyk, Szymon Pawlak, Tomasz Małysa, and Janusz Cebulski. 2025. "Optimizing Acidic Reductive Leaching for Lithium Recovery: Enhancing Sustainable Lithium Supply for Energy Markets" Energies 18, no. 2: 398. https://doi.org/10.3390/en18020398
APA StyleSobianowska-Turek, A., Zielińska, A., Urbańska, W., Mielniczek, A., Fornalczyk, A., Pawlak, S., Małysa, T., & Cebulski, J. (2025). Optimizing Acidic Reductive Leaching for Lithium Recovery: Enhancing Sustainable Lithium Supply for Energy Markets. Energies, 18(2), 398. https://doi.org/10.3390/en18020398