Geometry Optimisation of a Wave Energy Converter
Abstract
:1. Introduction
2. Methodology
2.1. Hydrodynamic Model
2.2. Optimisation Algorithm
3. Results and Discussion
3.1. Irregular Waves—Extreme Conditions
3.2. Cylinder Case Study
3.3. Average Wave Conditions
3.4. Resource Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ressurreição, A.; Gibbons, J.; Dentinho, T.P.; Kaiser, M.; Santos, R.S.; Edwards-Jones, G. Economic valuation of species loss in the open sea. Ecol. Econ. 2011, 70, 729–739. [Google Scholar] [CrossRef]
- Falnes, J. A review of wave-energy extraction. Mar. Struct. 2007, 20, 185–201. [Google Scholar] [CrossRef]
- Khan, N.; Kalair, A.; Abas, N.; Haider, A. Review of ocean tidal, wave and thermal energy technologies. Renew. Sustain. Energy Rev. 2017, 72, 590–604. [Google Scholar] [CrossRef]
- Mota, P.; Pinto, J.P. Wave energy potential along the western Portuguese coast. Renew. Energy 2014, 71, 8–17. [Google Scholar] [CrossRef]
- European Marine Energy Centre (EMEC). Wave Developers. Available online: https://www.emec.org.uk/marine-energy/wave-developers/ (accessed on 1 March 2021).
- Pecher, A.; Kofoed, J.P. Handbook of Ocean Wave Energy. In Ocean Engineering & Oceanography; Springer International Publishing: Cham, Switzerland, 2017; Volume 7. [Google Scholar] [CrossRef]
- Shadman, M.; Estefen, S.F.; Rodriguez, C.A.; Nogueira, I.C.M. A geometrical optimisation method applied to a heaving point absorber wave energy converter. Renew. Energy 2018, 115, 533–546. [Google Scholar] [CrossRef]
- Clemente, D.; Rosa-Santos, P.; Taveira-Pinto, F. On the potential synergies and applications of wave energy converters: A review. Renew. Sustain. Energy Rev. 2021, 135, 110162. [Google Scholar] [CrossRef]
- Falcão, A.F.d.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Garcia-Teruel, A.; Forehand, D.I.M. A review of geometry optimisation of wave energy converters. Renew. Sustain. Energy Rev. 2021, 139, 110593. [Google Scholar] [CrossRef]
- Piscopo, V.; Benassai, G.; Cozzolino, L.; Della Morte, R.; Scamardella, A. A new optimisation procedure of heaving point absorber hydrodynamic performances. Ocean. Eng. 2016, 116, 242–259. [Google Scholar] [CrossRef]
- McCabe, A.P. Constrained optimisation of the shape of a wave energy collector by genetic algorithm. Renew. Energy 2013, 51, 274–284. [Google Scholar] [CrossRef]
- Gilloteaux, J.C.; Ringwood, J. Control-informed geometric optimisation of wave energy converters. In Proceedings of the 8th IFAC Conference on Control Applications in Marine Systems, Rostock, Germany, 15–17 September 2010; Volume 43, pp. 366–371. [Google Scholar] [CrossRef]
- Klise, K.; Ruehl, K.; Chris-Ivanov; Coe, R.; Ströfer, C.A.M.; Boyd, M.; b0ndman; Kenny, C.; aidanbharath; Keester, A.; et al. MHKiT-Software/MHKiT-Python; v0.6.0 (v0.6.0); Zenodo: Genève, Switzerland, 2023. [Google Scholar] [CrossRef]
- Babarit, A.; Delhommeau, G. Theoretical and numerical aspects of the open source BEM solver NEMOH. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC2015), Nantes, France, 6–11 September 2015. [Google Scholar]
- Esmaeilzadeh, S.; Alam, M.R. Shape optimisation of wave energy converters for broadband directional incident waves. Ocean. Eng. 2019, 174, 186–200. [Google Scholar] [CrossRef]
- Thomsen, J.; Ferri, F.; Kofoed, J.; Black, K. Cost Optimisation of Mooring Solutions for Large Floating Wave Energy Converters. Energies 2018, 11, 159. [Google Scholar] [CrossRef]
- Sheng, W.; Tapoglou, E.; Ma, X.; Taylor, C.J.; Dorrell, R.M.; Parsons, D.R.; Aggidis, G. Hydrodynamic studies of floating structures: Comparison of wave-structure interaction modelling. Ocean Eng. 2022, 249, 110878. [Google Scholar] [CrossRef]
- Zhou, B.; Hu, J.; Sun, K.; Liu, Y.; Collu, M. Motion Response and Energy Conversion Performance of a Heaving Point Absorber Wave Energy Converter. Front. Energy Res. 2020, 8, 553295. [Google Scholar] [CrossRef]
- Quartier, N.; Ropero-Giralda, P.; Domínguez, J.M.; Stratigaki, V.; Troch, P. Influence of the Drag Force on the Average Absorbed Power of Heaving Wave Energy Converters Using Smoothed Particle Hydrodynamics. Water 2021, 13, 384. [Google Scholar] [CrossRef]
- Jin, S.; Patton, R.J.; Guo, B. Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment. Renew. Energy 2018, 129, 500–512. [Google Scholar] [CrossRef]
- Gao, J.; Mi, C.; Song, Z.; Liu, Y. Transient gap resonance between two closely-spaced boxes triggered by nonlinear focused wave groups. Ocean. Eng. 2024, 305, 117938. [Google Scholar] [CrossRef]
- MathWorks. Global Optimisation Toolbox User’s Guide; MathWorks: Natick, MA, USA, 2021; Available online: https://www.mathworks.com/help/releases/R2021a/gads/ (accessed on 1 April 2021).
- Ruehl, K.; Keester, A.; Forbush, D.; Grasberger, J.; Husain, S.; Leon, J.; Ogden., D.; Shabara, M. WEC-Sim v6.1; Zenodo: Genève, Switzerland, 2024; Available online: https://zenodo.org/records/13821012 (accessed on 23 October 2024).
- Guillou, N. Estimating wave energy flux from significant wave height and peak period. Renew. Energy 2020, 155, 1383–1393. [Google Scholar] [CrossRef]
- Arena, F.; Laface, V.; Malara, G.; Romolo, A.; Viviano, A.; Fiamma, V.; Sannino, G.; Carillo, A. Wave climate analysis for the design of wave energy harvesters in the Mediterranean Sea. Renew. Energy 2015, 77, 125–141. [Google Scholar] [CrossRef]
- Aderinto, T.; Li, H. Review on power performance and efficiency of wave energy converters. Energies 2019, 12, 4329. [Google Scholar] [CrossRef]
Hm0 (m) | Tp (s) | q (°) | |
---|---|---|---|
Minimum (SS1) | 0.54 | 3.87 | 193.19 |
5th Percentile (SS2) | 0.78 | 7.20 | 257.60 |
Root Mean Square (SS3) | 2.00 | 11.49 | 302.84 |
95th Percentile (SS4) | 3.54 | 15.59 | 332.57 |
Maximum (SS5) | 5.83 | 19.72 | 353.58 |
Simulation 1 | Simulation 2 | Simulation 3 | |
---|---|---|---|
ntheta | 6 | 11 | 6 |
nfobj | 500 | 300 | 300 |
Surge Forces (%) | Heave Forces (%) | Pitch Forces (%) | Energy (%) | |
---|---|---|---|---|
Simulations 1–2 | 1.91 | 0.00 | 0.88 | 0.72 |
Simulations 2–3 | 1.25 | 0.00 | 3.49 | 0.72 |
Simulations 1–3 | 0.64 | 0.00 | 2.64 | 0.00 |
Surge Forces (N) | Heave Forces (N) | Pitch Forces (N) | PTO Power (W) | Energy (kWh) | |
---|---|---|---|---|---|
Initial shape | 4.00 × 104 | 5.25 × 105 | 8.46 × 104 | 3.71 × 105 | 41.26 |
Final shape | 4.40 × 104 | 6.09 × 105 | 8.95 × 104 | 5.64 × 105 | 62.72 |
Variation | 10.00% | 16.00% | 5.79% | 52.02% | 52.02% |
Shape | Surge Forces (N) | Heave Forces (N) | Pitch Forces (N) | PTO Power (W) | Energy (kWh) |
---|---|---|---|---|---|
Cylinder | 1.08 × 105 | 3.46 × 105 | 2.16 × 105 | 1.53 × 105 | 17.01 |
Final | 4.30 × 104 | 5.97 × 105 | 9.33 × 104 | 5.45 × 105 | 60.60 |
Variation | 60.19% | 72.54% | 56.81% | 256% | 256% |
Shape | Surge Forces (N) | Heave Forces (N) | Pitch Forces (N) | PTO Power (W) | Energy (kWh) |
---|---|---|---|---|---|
Initial | 4.26 × 104 | 1.69 × 105 | 8.03 × 104 | 4.29 × 104 | 4.77 |
Final | 4.88 × 104 | 1.70 × 105 | 7.89 × 104 | 4.75 × 104 | 5.28 |
Variation | 14.55% | 0.59% | 1.74% | 10.72% | 10.72% |
Hm0 (m) | Tp (m) | Pdens (kW/m) | Pwave (kW) | |
---|---|---|---|---|
Extreme Wave Conditions | 4.78 | 10.82 | 104.09 | 1040.90 |
Average Wave Conditions | 2.00 | 11.49 | 19.38 | 193.80 |
PPTO (kW) | Pwave (kW) | RCW (%) | |
---|---|---|---|
Initial shape—Extreme conditions | 371.00 | 1040.90 | 36 |
Final shape—Extreme conditions | 564.00 | 1040.90 | 54 |
Initial shape—Average conditions | 42.90 | 193.80 | 22 |
Final shape—Average conditions | 47.50 | 193.80 | 24 |
Cylinder shape | 153.00 | 1040.90 | 15 |
Final shape—Cylinder case study | 545.00 | 1040.90 | 52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, S.; Ferreira, J.; Martins, N. Geometry Optimisation of a Wave Energy Converter. Energies 2025, 18, 207. https://doi.org/10.3390/en18010207
Costa S, Ferreira J, Martins N. Geometry Optimisation of a Wave Energy Converter. Energies. 2025; 18(1):207. https://doi.org/10.3390/en18010207
Chicago/Turabian StyleCosta, Susana, Jorge Ferreira, and Nelson Martins. 2025. "Geometry Optimisation of a Wave Energy Converter" Energies 18, no. 1: 207. https://doi.org/10.3390/en18010207
APA StyleCosta, S., Ferreira, J., & Martins, N. (2025). Geometry Optimisation of a Wave Energy Converter. Energies, 18(1), 207. https://doi.org/10.3390/en18010207