Compensated Neural Network Training Algorithm with Minimized Training Dataset for Modeling the Switching Transients of SiC MOSFETs
Abstract
:1. Introduction
- The hybrid model contains a fundamental model and an NN compensation part. The fundamental model, which could be the simulation with the device model, or the analytical model, is used to provide basic accuracy (knowledge-driven), while the NN is utilized to compensate for the deviations between the model and the experimental results (data-driven);
- The NN training method with augmented data is proposed to minimize the required training datasets. Even though the NN is trained with the data from a single operating condition, the proposed model can accurately predict the switching transients of other operating conditions.
2. Analytical Model for the SiC MOSFET
2.1. Expression of the Analytical Model
2.2. Analysis of Different Modes
2.3. Implementation
3. Algorithm for Training Datasets Minimization
3.1. Basic Idea
3.2. Feasibility of Reducing Training Datasets
- (1)
- The waveforms from one operating condition contain multiple sets of data, e.g., a 200 ns long simulation and experimental waveforms contain 400 sets of data. Therefore, multiple sets of “input-output pairs” can be organized from one operating condition to fulfill the data requirements for NN training;
- (2)
- The mission of our study is to evaluate the switching transients of the device with a chosen driver and gate resistor, so there is no need for an NN to learn about variations in gate circuit parameters. Furthermore, it is found that the vgs waveforms under different operating conditions have only minor differences in oscillations. Therefore, one vgs waveform contains sufficient information for NN training;
- (3)
- The parasitic capacitance of S1, i.e., Crss and Coss are highly correlated to vds. As the vds waveforms of M2~M4 have covered the values from 0 to VDC, it contains enough information for NN training;
- (4)
- Based on the characteristics of some modes, such as M1 and Mstable, data augmentation is adopted to increase the diversity of the datasets and enhance the generalization of NN.
4. Proposed Hybrid Model
4.1. Deviations Between the Analytical Model and Experimental Results
4.2. Training Algorithm for the Neural Network Compensation
4.2.1. Loss Function Design
4.2.2. Boost-Up Training Method
5. Model Verification and Discussion
5.1. Model Verification
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yang, S.; Zhang, X.; Sun, H. Exceptional Point Protected Robust On-chip Optical Logic Gates. Exploration 2022, 2, 20210243. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.-J.; Kang, D.-Y.; Kim, N.; Lee, H.-J.; Kim, T.-H.; Kim, T.; Kim, T.G. Ag-GST/HfOx-Based Unidirectional Threshold Switching Selector with Low Leakage Current and Threshold Voltage Distribution for High-Density Cross-Point Arrays. Rare Met. 2024, 43, 280–288. [Google Scholar] [CrossRef]
- Yu, Z.-Y.; Zhao, J.-Y.; Ma, G.-K.; Chen, A.; Chen, D.-L.; Rao, Y.-H.; Wang, H. High Uniformity and Stability of 1S1R Directly Stacked for High-Density Cross-Point Memory Applications. Rare Met. 2022, 41, 3671–3676. [Google Scholar] [CrossRef]
- Biela, J.; Schweizer, M.; Waffler, S.; Kolar, J.W. SiC versus Si—Evaluation of Potentials for Performance Improvement of Inverter and DC–DC Converter Systems by SiC Power Semiconductors. IEEE Trans. Ind. Electron. 2011, 58, 2872–2882. [Google Scholar] [CrossRef]
- She, X.; Huang, A.Q.; Lucía, Ó.; Ozpineci, B. Review of Silicon Carbide Power Devices and Their Applications. IEEE Trans. Ind. Electron. 2017, 64, 8193–8205. [Google Scholar] [CrossRef]
- Hamada, K.; Nagao, M.; Ajioka, M.; Kawai, F. SiC—Emerging Power Device Technology for Next-Generation Electrically Powered Environmentally Friendly Vehicles. IEEE Trans. Electron Devices 2015, 62, 278–285. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, L.; Xie, R.; Shi, Y.; Li, H. A 60-kW 3-kW/Kg Five-Level T-Type SiC PV Inverter with 99.2% Peak Efficiency. IEEE Trans. Ind. Electron. 2017, 64, 9144–9154. [Google Scholar] [CrossRef]
- Sun, P.; Pan, X.; Han, X.; Zheng, H.; Liang, Y.; Hu, Y.; Niu, F.; Zeng, Z. Simultaneous Mitigation of Switching Overvoltage and Oscillation for SiC MOSFET via Gate Charge Injection Concept. IEEE Trans. Power Electron. 2024, 39, 14376–14386. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Wang, F.; Costinett, D.; Tolbert, L.M.; Blalock, B.J. Characterization and Modeling of a SiC MOSFET’s Turn-On Overvoltage. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 7003–7009. [Google Scholar]
- Ahmed, M.R.; Todd, R.; Forsyth, A.J. Predicting SiC MOSFET Behavior Under Hard-Switching, Soft-Switching, and False Turn-On Conditions. IEEE Trans. Ind. Electron. 2017, 64, 9001–9011. [Google Scholar] [CrossRef]
- Mantooth, H.A.; Peng, K.; Santi, E.; Hudgins, J.L. Modeling of Wide Bandgap Power Semiconductor Devices—Part I. IEEE Trans. Electron Devices 2015, 62, 423–433. [Google Scholar] [CrossRef]
- Kraus, R.; Castellazzi, A. A Physics-Based Compact Model of SiC Power MOSFETs. IEEE Trans. Power Electron. 2016, 31, 5863–5870. [Google Scholar] [CrossRef]
- Mudholkar, M.; Ahmed, S.; Ericson, M.N.; Frank, S.S.; Britton, C.L.; Mantooth, H.A. Datasheet Driven Silicon Carbide Power MOSFET Model. IEEE Trans. Power Electron. 2014, 29, 2220–2228. [Google Scholar] [CrossRef]
- Roy, S.K.; Basu, K. Analytical Model to Study Hard Turn-off Switching Dynamics of SiC Mosfet and Schottky Diode Pair. IEEE Trans. Power Electron. 2021, 36, 861–875. [Google Scholar] [CrossRef]
- Hayati, M.; Rezaei, A.; Seifi, M. CNT-MOSFET Modeling Based on Artificial Neural Network: Application to Simulation of Nanoscale Circuits. Solid-State Electron. 2010, 54, 52–57. [Google Scholar] [CrossRef]
- Wang, J.; Xu, M.; Zhang, J.; Wang, L.; Gan, Y.; Yamazaki, T. A Data-Based IGBT Model for Efficient and Accurate Electro-Thermal Analysis. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 3442–3448. [Google Scholar]
- Li, H.; Zhao, X.; Sun, K.; Zhao, Z.; Cao, G.; Zheng, T.Q. A Non-Segmented PSpice Model of SiC Mosfet with Temperature-Dependent Parameters. IEEE Trans. Power Electron. 2019, 34, 4603–4612. [Google Scholar] [CrossRef]
- Turzynski, M.; Kulesza, W.J. A Simplified Behavioral MOSFET Model Based on Parameters Extraction for Circuit Simulations. IEEE Trans. Power Electron. 2016, 31, 3096–3105. [Google Scholar] [CrossRef]
- Ren, Y.; Xu, M.; Zhou, J.; Lee, F.C. Analytical Loss Model of Power MOSFET. IEEE Trans. Power Electron. 2006, 21, 310–319. [Google Scholar] [CrossRef]
- Yang, P.; Ming, W.; Liang, J.; Lüdtke, I.; Berry, S.; Floros, K. Hybrid Data-Driven Modeling Methodology for Fast and Accurate Transient Simulation of SiC MOSFETs. IEEE Trans. Power Electron. 2022, 37, 440–451. [Google Scholar] [CrossRef]
- Wang, J.; Chung, H.S.; Li, R.T. Characterization and Experimental Assessment of the Effects of Parasitic Elements on the MOSFET Switching Performance. IEEE Trans. Power Electron. 2013, 28, 573–590. [Google Scholar] [CrossRef]
- Qian, C.; Wang, Z.; Xin, G.; Shi, X. Datasheet Driven Switching Loss, Turn-ON/OFF Overvoltage, Di/Dt, and Dv/Dt Prediction Method for SiC MOSFET. IEEE Trans. Power Electron. 2022, 37, 9551–9570. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, Z.; Chang, J.; Wu, Z.; Jiang, F.; Liu, X.; Lodhi, E. Overview of Switching Transient Analytical Modeling for SiC MOSFETs. IEEE Trans. Power Electron. 2024, 1–14. [Google Scholar] [CrossRef]
- Wu, Y.; Yin, S.; Li, H. Analytical Modeling of Switching Characteristics of the SiC MOSFET Based on Finite State Machine. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 1956–1963. [Google Scholar]
- Liang, M.; Zheng, T.Q.; Li, Y. An Improved Analytical Model for Predicting the Switching Performance of SiC MOSFETs. J. Power Electron. 2016, 16, 374–387. [Google Scholar] [CrossRef]
- Ahmed, M.R.; Todd, R.; Forsyth, A.J. Analysis of SiC MOSFETs under Hard and Soft-Switching. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 2231–2238. [Google Scholar]
- Mohammed Cherif, O.; Nadji, B.; Tadjer, S.A.; Bencherif, H. An Analytical Approach for Evaluating Turn-On Switching Losses in SiC MOSFET with Kelvin Pin: Concept and Implementation. IEEE Trans. Electron Devices 2024, 71, 3116–3122. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, C.; Yan, Y.; Huang, Z.; Kang, Y. Investigation on Ultralow Turn-off Losses Phenomenon for SiC MOSFETs with Improved Switching Model. IEEE Trans. Power Electron. 2021, 36, 9382–9397. [Google Scholar] [CrossRef]
- Peng, H.; Chen, J.; Cheng, Z.; Kang, Y.; Wu, J.; Chu, X. Accuracy-Enhanced Miller Capacitor Modeling and Switching Performance Prediction for Efficient SiC Design in High-Frequency X-Ray High-Voltage Generators. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 179–194. [Google Scholar] [CrossRef]
- Qi, Z.; Pei, Y.; Wang, L.; Wang, K.; Zhu, M.; Zhao, C.; Yang, Q.; Gan, Y. An Accurate Datasheet-Based Full-Characteristics Analytical Model of GaN HEMTs for Deadtime Optimization. IEEE Trans. Power Electron. 2021, 36, 7942–7955. [Google Scholar] [CrossRef]
- Xie, R.; Xu, G.; Yang, X.; Tang, G.; Wei, J.; Tian, Y.; Zhang, F.; Chen, W.; Wang, L.; Chen, K.J. Modeling the Gate Driver IC for GaN Transistor: A Black-Box Approach. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2900–2904. [Google Scholar]
- LTspice & PLECS Models|Wolfspeed. Available online: https://www.wolfspeed.com/tools-and-support/power/ltspice-and-plecs-models/ (accessed on 11 October 2024).
Parameters | Values |
---|---|
S1 and D | C3M0065090J |
Turn-on/off Rg1 | 6.8/1 Ω |
Inductor L | 155 μH |
Positive/negative gate-drive voltage Vgp/Vgn | +15/−5 V |
On-resistance of S1 Ron | 65 mΩ |
Total parasitic inductance Lp | 31 nH |
Total gate inductance Lg | 10 nH |
Common source inductance Lcs | 1 nH |
Parasitic resistance Rp | 0.5 Ω |
On-resistance of D RF | 0.3 Ω |
Forward voltage of D VF | 3 V |
VDC | 200, 250, 300 V |
IL | 10, 15, 20 A |
ΔT | 0.01 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Chen, Y.; Tong, S.; Cheng, C.; Kang, Y. Compensated Neural Network Training Algorithm with Minimized Training Dataset for Modeling the Switching Transients of SiC MOSFETs. Energies 2024, 17, 6061. https://doi.org/10.3390/en17236061
Wang R, Chen Y, Tong S, Cheng C, Kang Y. Compensated Neural Network Training Algorithm with Minimized Training Dataset for Modeling the Switching Transients of SiC MOSFETs. Energies. 2024; 17(23):6061. https://doi.org/10.3390/en17236061
Chicago/Turabian StyleWang, Ruwen, Yu Chen, Siyu Tong, Congzhi Cheng, and Yong Kang. 2024. "Compensated Neural Network Training Algorithm with Minimized Training Dataset for Modeling the Switching Transients of SiC MOSFETs" Energies 17, no. 23: 6061. https://doi.org/10.3390/en17236061
APA StyleWang, R., Chen, Y., Tong, S., Cheng, C., & Kang, Y. (2024). Compensated Neural Network Training Algorithm with Minimized Training Dataset for Modeling the Switching Transients of SiC MOSFETs. Energies, 17(23), 6061. https://doi.org/10.3390/en17236061