Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear
Abstract
:1. Introduction
- For the first time, an RNN structure is applied to classify PRPDs in a GIS. The proposed LSTM RNN model can learn features from PRPDs without manual feature extraction.
- To obtain training and test data for the proposed LSTM RNN model, we conduct PRPD and noise experiments for a GIS. We collect extensive data with respect to various fault types and noise for a GIS.
- The performance of the proposed LSTM RNN model is verified with conventional ANNs and SVMs. The proposed method yields highly accurate results even for the PRPD data observed in a very short time. Therefore, it considerably reduces the number of PRPDs for PD classification, thus saving the data for fault diagnosis.
2. Experiments in the GIS
2.1. PRPDs in the GIS
2.2. Noise Measurement
3. Neural Network Model for Diagnosing PRPDs
- -
- is the forget gate, which can decide what information is unnecessary from the cell state.
- -
- is the input gate, which decides which values in the cell state should be updated.
- -
- is the external output gate, which is a vector of new candidate values that could be added to the state. gates are used to modify the cell state between time steps as shown in Equation (2).
- -
- is the output gate, which acts as a filter to decide what parts of the current cell state should go the output, . The cell state is then put through and filtered through to become the hidden state of the current time step as shown in Equation (3).
4. Performance Evaluation
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Okabe, S.; Ueta, G.; Hama, H.; Ito, T.; Hikita, M.; Okubo, H. New aspects of UHF PD diagnostics on gas-insulated systems. IEEE Trans. Dielectr. Electr. Insul. 2014, 32, 2245–2258. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Li, J. UHF Moore fractal antennas for online GIS PD detection. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 852–855. [Google Scholar] [CrossRef]
- Schichler, U.; Koltunowicz, W.; Gautschi, D.; Girodet, A.; Hama, H.; Juhre, K.; Lopez-Roldan, J.; Okabe, S.; Neuhold, S.; Neumann, C.; et al. UHF Partial Discharge Detection System for GIS: Application Guide for Sensitivity Verification. In Proceedings of the VDE High Voltage Technology, Berlin, Germany, 14–16 November 2016; pp. 1–9. [Google Scholar]
- Schichler, U.; Koltunowicz, W.; Endo, F.; Feser, K.; Giboulet, A.; Girodet, A.; Hama, H.; Hampton, B.; Kranz, H.-G.; Lopez-Roldan, J.; et al. Risk assessment on defects in GIS based on PD diagnostics. IEEE Trans. Dielect. Electr. Insul. 2013, 20, 2165–2172. [Google Scholar] [CrossRef]
- Kurrer, R.; Feser, K. The application of ultra-high-frequency partial discharge measurements to gas-insulated substations. IEEE Trans. Power Deliv. 1998, 13, 777–782. [Google Scholar] [CrossRef]
- Okabe, S.; Kaneko, S.; Yoshimura, M.; Muto, H.; Nishida, C.; Kamei, M. Propagation characteristics of electromagnetic waves in three-phase-type tank from viewpoint of partial discharge diagnosis on gas insulated switchgear. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 199–205. [Google Scholar] [CrossRef]
- Wu, M.; Cao, H.; Cao, J.; Nguyen, H.L.; Gomes, J.B.; Krishnaswamy, S.P. An overview of state-of-the-art partial discharge analysis techniques for condition monitoring. IEEE Trans. Electr. Insul. Mag. 2015, 31, 22–35. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, C.; Ren, M.; Albarracín, R.; Ye, R. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products. Sensors 2017, 17, 2627. [Google Scholar] [CrossRef] [PubMed]
- Judd, M.D.; Yang, L.; Hunter, I.B. Partial discharge monitoring of power transformers using UHF sensors. Part I: Sensors and signal interpretation. IEEE Trans. Electr. Insul. Mag. 2005, 21, 5–14. [Google Scholar] [CrossRef]
- Gao, W.; Ding, D.; Liu, W. Research on the typical partial discharge using the UHF detection method for GIS. IEEE Trans. Power Deliv. 2011, 26, 2621–2629. [Google Scholar] [CrossRef]
- Judd, M.D.; Farish, O.; Hampton, B.F. The excitation of UHF signals by partial discharges in GIS. IEEE Trans. Dielect. Electr. Insul. 1996, 3, 213–228. [Google Scholar] [CrossRef]
- Li, T.; Rong, M.; Zheng, C.; Wang, X. Development simulation and experiment study on UHF partial discharge sensor in GIS. IEEE Trans. Dielect. Electr. Insul. 2012, 19, 1421–1430. [Google Scholar] [CrossRef]
- Álvarez Gómez, F.; Albarracín-Sánchez, R.; Garnacho Vecino, F.; Granizo Arrabé, R. Diagnosis of Insulation Condition of MV Switchgears by Application of Different Partial Discharge Measuring Methods and Sensors. Sensors 2018, 18, 720. [Google Scholar] [CrossRef] [PubMed]
- Cosgrave, J.A.; Vourdas, A.; Jones, G.R.; Spencer, J.W.; Murphy, M.M.; Wilson, A. Acoustic monitoring of partial discharges in gas insulated substations using optical sensors. IEE Proc. A Sci. Meas. Technol. 1993, 140, 369–374. [Google Scholar] [CrossRef]
- Markalous, S.M.; Tenbohlen, S.; Feser, K. Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals. IEEE Trans. Dielect. Electr. Insul. 2008, 15, 1070–9878. [Google Scholar] [CrossRef]
- Wang, Z.; Cotton, I.; Northcote, S. Dissolved gas analysis of alternative fluids for power transformers. IEEE Trans. Electr. Insul. Mag. 2007, 23, 5–14. [Google Scholar]
- Faiz, J.; Soleimani, M. Dissolved gas analysis evaluation in electric power transformers using conventional methods a review. IEEE Trans. Dielect. Electr. Insul. 2017, 24, 1239–1248. [Google Scholar] [CrossRef]
- Piccin, R.; Mor, A.R.; Morshuis, P.; Girodet, A.; Smit, J. Partial discharge analysis of gas insulated systems at high voltage AC and DC. IEEE Trans. Dielect. Electr. Insul. 2015, 22, 218–228. [Google Scholar] [CrossRef]
- Li, L.; Tang, J.; Liu, Y. Partial discharge recognition in gas insulated switchgear based on multi-information fusion. IEEE Trans. Dielect. Electr. Insul. 2015, 22, 1080–1087. [Google Scholar] [CrossRef]
- Zhu, M.X.; Xue, J.Y.; Zhang, J.N.; Li, Y.; Deng, J.B.; Mu, H.B.; Zhang, G.J.; Shao, X.J.; Liu, X.W. Classification and separation of partial discharge ultra-high-frequency signals in a 252 kV gas insulated substation by using cumulative energy technique. IET Sci. Meas. Technol. 2016, 10, 316–326. [Google Scholar] [CrossRef]
- Gao, W.; Zhao, D.; Ding, D.; Yao, S.; Zhao, Y.; Liu, W. Investigation of frequency characteristics of typical PD and the propagation properties in GIS. IEEE Trans. Dielect. Electr. Insul. 2015, 22, 1654–1662. [Google Scholar] [CrossRef]
- Dai, D.; Wang, X.; Long, J.; Tian, M.; Zhu, G.; Zhang, J. Feature extraction of GIS partial discharge signal based on S-transform and singular value decomposition. IET Sci. Meas. Technol. 2016, 11, 186–193. [Google Scholar] [CrossRef]
- Lin, Y.H. Using k-means clustering and parameter weighting for partial-discharge noise suppression. IEEE Trans. Power Deliv. 2011, 26, 2380–2390. [Google Scholar] [CrossRef]
- Abdel-Galil, T.K.; Sharkawy, R.M.; Salama, M.M.; Bartnikas, R. Partial discharge pattern classification using the fuzzy decision tree approach. IEEE Trans. Instrum. Meas. 2005, 54, 2258–2263. [Google Scholar] [CrossRef]
- Si, W.R.; Li, J.H.; Li, D.J.; Yang, J.G.; Li, Y.M. Investigation of a comprehensive identification method used in acoustic detection system for GIS. IEEE Trans. Dielect. Electr. Insul. 2010, 17, 721–732. [Google Scholar] [CrossRef]
- Mas’ud, A.A.; Ardila-Rey, J.A.; Albarracín, R.; Muhammad-Sukki, F.; Bani, N.A. Comparison of the Performance of Artificial Neural Networks and Fuzzy Logic for Recognizing Different Partial Discharge Sources. Energies 2017, 10, 1060. [Google Scholar] [CrossRef]
- Chang, C.S.; Jin, J.; Chang, C.; Hoshino, T.; Hanai, M.; Kobayashi, N. Separation of Corona Using Wavelet Packet Transform and Neural Network for Detection of Partial Discharge in Gas-Insulated Substations. IEEE Trans. Power Deliv. 2005, 20, 1363–1369. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, S.; Shu, N.; Tang, J.; Li, W. GIS partial discharge pattern recognition based on the chaos theory. IEEE Trans. Dielect. Electr. Insul. 2014, 21, 783–790. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, C.; Hepburn, D.M.; Judd, M.D.; Siew, W.H. Application of K-Means method to pattern recognition in on-line cable partial discharge monitoring. IEEE Trans. Dielect. Electr. Insul. 2013, 20, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Mas’ud, A.A.; Ardila-Rey, J.A.; Albarracín, R.; Muhammad-Sukki, F. An Ensemble-Boosting Algorithm for Classifying Partial Discharge Defects in Electrical Assets. Machines 2017, 5, 18. [Google Scholar] [CrossRef]
- Mas’ud, A.A.; Albarracín, R.; Ardila-Rey, J.A.; Muhammad-Sukki, F.; Illias, H.A.; Bani, N.A.; Munir, A.B. Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions. Energies 2016, 9, 574. [Google Scholar] [CrossRef]
- Kim, K.H.; Kang, M.C.; Kim, M.H.; Shin, Y.J.; Kim, Y.H. Recognition method of partial discharge based on support vector machine in gas insulated switchgear. In Proceedings of the CIGRE Asia-Oceania Regional Council Technical Meeting, Auckland, New Zealand, 10–15 September 2017. [Google Scholar]
- Robles, G.; Parrado-Hernández, E.; Ardila-Rey, J.; Martínez-Tarifa, J.M. Multiple partial discharge source discrimination with multiclass support vector machines. Expert Syst. Appl. 2016, 55, 417–428. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent neural network-based language moDeliv. In Proceedings of the 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 26–30 September 2010; Volume 2, p. 3. [Google Scholar]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. arXiv, 2014; arXiv:1409.3215v3. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Maaten, L.V.D.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv, 2012; arXiv:1212.5701. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv, 2014; arXiv:1412.6980. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv, 2016; arXiv:1603.04467v2. [Google Scholar]
- Keras-Team. 2015. Available online: https://github.com/fchollet/keras (accessed on 22 October 2017).
- Cui, X.; Goel, V.; Kingsbury, B. Data augmentation for deep convolutional neural network acoustic modeling. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 4545–4549. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector network. Mach. Learn. J. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Huang, H.Y.; Lin, C.J. Linear and kernel classification: When to use which. In Proceedings of the SIAM International Conference on Data Mining, Miami, FL, USA, 5–7 May 2016; pp. 216–224. [Google Scholar]
Fault Types | Corona | Floating | Particle | Void | Noise |
---|---|---|---|---|---|
Number of experiments | 94 | 35 | 66 | 242 | 16 |
Fault Types | Overall | Corona | Floating | Particle | Void | Noise |
---|---|---|---|---|---|---|
Linear SVM | 88.63% | 91.87% | 73.94% | 65.47% | 98.19% | 51.94% |
Nonlinear SVM with RBF kernel | 90.71% | 95.28% | 67.81% | 77.62% | 98.69% | 45.53% |
ANN | 93.01% | 95.87% | 76.27% | 85.34% | 98.12% | 65.11% |
Proposed LSTM RNN model | 96.74% | 97.04% | 79.54% | 93.18% | 99.94% | 98.26% |
Train Time (min) | Train Time (min*GHz) | Test Time on Test Set (s) | Test Time per Sample (s*GHz) | |
---|---|---|---|---|
Linear SVM | 5 | 26,880 | ~0.2 s | 0.013 |
Nonlinear SVM with RBF kernel | 5.66 | 30,428 | ~0.3 s | 0.02 |
ANN | 6.66 | 35,804 | ~6 s | 0.403 |
Proposed LSTM RNN model | 33.33 | 179,182 | ~15 s | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.-T.; Nguyen, V.-H.; Yun, S.-J.; Kim, Y.-H. Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear. Energies 2018, 11, 1202. https://doi.org/10.3390/en11051202
Nguyen M-T, Nguyen V-H, Yun S-J, Kim Y-H. Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear. Energies. 2018; 11(5):1202. https://doi.org/10.3390/en11051202
Chicago/Turabian StyleNguyen, Minh-Tuan, Viet-Hung Nguyen, Suk-Jun Yun, and Yong-Hwa Kim. 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear" Energies 11, no. 5: 1202. https://doi.org/10.3390/en11051202
APA StyleNguyen, M.-T., Nguyen, V.-H., Yun, S.-J., & Kim, Y.-H. (2018). Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear. Energies, 11(5), 1202. https://doi.org/10.3390/en11051202