A Multi-Model Polynomial-Based Tracking Method for Targets with Complex Maneuvering Patterns
Abstract
:1. Introduction
2. Multi-Model Polynomials Tracking Algorithm
2.1. Kalman Filter for Single Polynomial Fitting
2.2. Polynomial Model Set Design
2.2.1. The Fixed Polynomial Model Set Design
2.2.2. The Adaptive Polynomial Model Set Design
2.3. Multi-Model Polynomial Tracking Algorithm
Algorithm 1. Pseudo-code of one cycle of multi-model polynomial tracking algorithm. | ||
Cycle ofMulti-Model Polynomial Tracking Algorithm | ||
Input: | , , , , , , , , , , , , , , | |
1. | Multi-mode polynomial filtering with a fixed model set (for i = 1,…, ) | |
1.1 | Calculate the fusion probability | (where is an element of the TPM) |
1.2 | Fusion state and covariance | , |
1.3 | Approximating the target state with fitted polynomials | , |
1.4 | Kalman filtering based on fitted -polynomials | |
1.5 | Calculate the likelihood probability | |
1.6 | Estimated fusion | |
2. | Adaptive model set design | |
2.1 | Calculate the mean and covariance of the model set | |
2.2 | Model design based on moment matching (for i = 1,…, ) | |
3. | Multi-mode polynomial filtering with a adaptive designed model set (for i = 1,…, ) | |
3.1 | Approximating the target state with fitted polynomials | , |
3.2 | Kalman filtering based on fitted polynomials | |
3.3 | Calculate the likelihood probability | |
3.4 | Estimated fusion | |
3.5 | Probability normalization | |
4 | Filter result fusion |
3. Maneuvering Target Trajectory Datasets Construction
3.1. Kinematic Random Maneuver Trajectory Dataset
3.2. UAV Maneuver Trajectory Dataset
3.3. Surface Boat Trajectory Dataset
4. Maneuvering Target Tracking Experiment
4.1. Target Tracking Experiment Based on Kinematic Random Maneuver Trajectory Dataset
- (1)
- Under the condition that the model set and noise parameters are set reasonably, the accuracy of the traditional multi-model algorithm is better than the proposed algorithm as a whole, and as the target maneuverability is stronger and the observation error is larger, the advantage is more obvious. As shown in Table 4, its tracking accuracy can be reduced by 13% compared with this paper’s algorithm under large error conditions. However, as the maneuvering strength and error decrease, the advantage of the traditional method is also weakening, and even in Table 6, its tracking accuracy is lower than that of this paper’s algorithm.
- (2)
- Under the condition of sufficient data volume, the deep learning algorithm can also show better tracking accuracy, however, with the increase of observation error, the accuracy of the algorithm decreases more obviously, as in Table 4, under the condition of small error, the tracking accuracy is in the optimal among the algorithms, and with the increase of error, its tracking accuracy is comparable with this paper’s algorithm.
- (3)
- In summary, when the target motion characteristics and system noise parameters are known, and the amount of data is sufficient, the traditional multi-model algorithm and the deep learning algorithm are better than the proposed algorithm as a whole.
4.2. Target Tracking Experiment Based on UAV Maneuver Trajectory Dataset
4.3. Target Tracking Experiment Based on Surface Boat Trajectory Dataset
4.4. Comparison of Algorithm’s Computational Time Consumption
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, H.; Xiu, J.; Xin, G. Radar Data Processing and Applications; Electronic Industry Press: Beijing, China, 2013. [Google Scholar]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part V. Multiple-model methods. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 1255–1321. [Google Scholar]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Li, X.R.; Jilkov, V.P. Survey of maneuvering target tracking. Part I. Dynamic models. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 1333–1364. [Google Scholar]
- Bucy, R.S. Linear and nonlinear filtering. Proc. IEEE 1970, 58, 854–864. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Challa, S.; Blom, H.A.P. IMM estimator versus optimal estimator for hybrid systems. IEEE Trans. Aerosp. Electron. Syst. 2005, 41, 986–991. [Google Scholar] [CrossRef]
- Sheng, H.; Zhao, W.; Wang, J. Interacting multiple model tracking algorithm fusing input estimation and best linear unbiased estimation filter. IET Radar Sonar Navig. 2017, 11, 70–77. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.R.; Duan, Z. Hybrid grid multiple-model estimation with application to maneuvering target tracking. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 122–136. [Google Scholar] [CrossRef]
- Jazwinski, A.H.; Hipkins, C. J-Adaptive Estimation with Estimated Noise Statistics; Springer: Berlin/Heidelberg, Germany, 1975. [Google Scholar]
- Bar-Shalom, Y.; Birmiwal, K. Variable Dimension Filter for Maneuvering Target Tracking. IEEE Trans. Aerosp. Electron. Syst. 1982, AES-18, 621–629. [Google Scholar] [CrossRef]
- Chan, Y.T.; Hu, A.; Plant, J.B. A Kalman Filter Based Tracking Scheme with Input Estimation. IEEE Trans. Aerosp. Electron. Syst. 1979, AES-15, 237–244. [Google Scholar] [CrossRef]
- Singer, R.A. Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets. IEEE Trans. Aerosp. Electron. Syst. 1970, 6, 473–483. [Google Scholar] [CrossRef]
- Zhou, H. The “current” statistical model of maneuvering targets and adaptive tracking algorithm. J. Aeronaut. 1983, 4, 73–86. [Google Scholar]
- Mehrotra, K.; Mahapatra, P.R. A jerk model for tracking highly maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 1997, 33, 1094–1105. [Google Scholar] [CrossRef]
- Qian, K.; Zhou, Y.; Yang, L.J.; Xie, R.P.; He, X.D. Air target track prediction model based on BP neural network. Command Inf. Syst. Technol. 2017, 8, 54–58. [Google Scholar]
- Schimpf, N.; Knoblock, E.J.; Wang, Z.; Apaza, R.D. Flight trajectory prediction based on hybrid-recurrent networks. In Proceedings of the IEEE Cognitive Communications for Aerospace Applications Workshop, Cleveland, OH, USA, 21–23 June 2021. [Google Scholar]
- Liu, J.; Wang, Z.; Xu, M. DeepMTT: A deep learning maneuvering target-tracking algorithm based on bidirectional LSTM network. Inf. Fusion 2020, 53, 289–304. [Google Scholar] [CrossRef]
- Guo, Y.; Zhu, J.; Zhou, S.Y.T. A joint model and data driven track segment association algorithm for manoeuvring target tracking. IET Radar Sonar Navig. 2022, 16, 1670–1680. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wang, Z.K.; Yang, Y.B.; Lu, Y. A Data-Driven Maneuvering Target Tracking Method Aided with Partial Models. IEEE Trans. Veh. Technol. 2024, 73, 414–425. [Google Scholar] [CrossRef]
- Guo, Q.; Teng, L.; Yin, T.; Guo, Y.; Wu, X.; Song, W. Hybrid-driven Gaussian process online learning for highly maneuvering multi-target tracking. Front. Inf. Technol. Electron. Eng. 2023, 24, 1647–1656. [Google Scholar] [CrossRef]
- Cai, R.H.; Fan, X.T.; Wu, S.Y.; Wang, L.; Wu, W.W. Multi-sensor and multi-maneuver target tracking based on interactive CPHD. Control Decis. 2022, 37, 47–57. [Google Scholar]
- Ahi, B.; Haeri, M. Practical distributed maneuvering target tracking using delayed information of heterogeneous unregistered sensors. Signal Process. 2022, 193, 193. [Google Scholar] [CrossRef]
- Kumar, A.; Muthukumar, A.; Rajesh, R. Centralized Multi Sensor Data Fusion Scheme for Airborne Radar and IFF. In Proceedings of the 2024 IEEE Space, Aerospace and Defence Conference (SPACE), Bengaluru, India, 22–23 July 2024. [Google Scholar]
- Cao, C.; Zhao, Y. Multiple-model generalised labelled multi-Bernoulli filter with distributed sensors for tracking manoeuvring targets using belief propagation. IET Radar Sonar Navig. 2023, 17, 845–858. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Xu, C.; Gao, F. Geometrically Constrained Trajectory Optimization for Multicopters. arXiv 2021, arXiv:2103.00190. [Google Scholar] [CrossRef]
- Germani, A.; Manes, C.; Palumbo, P. Polynomial extended Kalman filter. IEEE Trans. Autom. Control 2005, 50, 2059–2064. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Yin, J. A polynomial prediction model for maneuvering targets and its tracking algorithm. J. Aeronaut. 2009, 30, 11. [Google Scholar]
- Liu, Y.; Wang, Z.; He, X.; Zhou, D. Filtering and fault detection for nonlinear systems with polynomial approximation. Automatica 2015, 54, 348–359. [Google Scholar] [CrossRef]
- Li, X.R.; Zhao, Z.; Li, X.B. General model-set design methods for multiple-model approach. IEEE Trans. Autom. Control 2005, 50, 1260–1276. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, L.; Wang, R. Research on curve fitting and optimization algorithm of least squares. Ind. Control Comput. 2021, 34, 100–101. [Google Scholar] [CrossRef]
- Wang, H.; Meng, J. A predictive modeling approach for multiple linear regression. J. Beijing Univ. Aeronaut. Astronaut. 2007, 33, 5. [Google Scholar] [CrossRef]
- Liang, Y.; Li, X.R.; Han, C.; Duan, Z. A general systematic method for model-set design. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1505–1520. [Google Scholar] [CrossRef]
- Hickernell, F. A generalized discrepancy and quadrature error bound. Math. Comput. 1998, 67, 299–322. [Google Scholar] [CrossRef]
- Winker, P.; Fang, K.T. Application of threshold-accepting to the evaluation of the discrepancy of a set of points. SIAM J. Numer. Anal. 1997, 34, 2028–2042. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Lan, J.; Li, X.R.; Mu, C. Best model augmentation for variable-structure multiple-model estimation. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2008–2025. [Google Scholar] [CrossRef]
- Chen, C.; Fu, Z.; Chen, Z.; Jin, S.; Cheng, Z.; Jin, X.; Hua, X.-S. Homm: Higher-order moment matching for unsupervised domain adaptation. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3422–3429. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, W. The proof of the Weierstrass-causal approximation theorem. J. Qiqihar Light Ind. Inst. 1991, 007, 65–72. [Google Scholar]
State transfer function | Matrix for fitting weights | ||
Control input function | Fixed model set | ||
State noise | Probability density function of mode parameters | ||
Observation vectors | Cumulative probability function of mode parameters | ||
Observation function | Coordinate transformation angle | ||
Observation noise | mode probability space | ||
State noise covariance matrix | Model parameter set | ||
Observational noise covariance matrix | Cumulative probability of the model sample | ||
State vector functions for polynomials | Sample of models | ||
Polynomial parameter vector | Sample variance of models | ||
Time variable | Normal distribution function | ||
Observation Sequence Matrix | Probability value | ||
Observation sequence length | Likelihood value | ||
Polynomial order | Cardinal number | ||
Polynomial parameter matrix | State estimates | ||
Time vector | Covariance matrix for state estimation | ||
Parameter of exponential distribution | Acceleration | ||
expectation operator |
High Polynomial Order | Low Polynomial Order | |
---|---|---|
Long fitted sequence | Low noise level | — |
Short fitted sequence | — | High noise level |
Dataset | Reality | Maneuvering Information | Data Volume | Purpose |
---|---|---|---|---|
Kinematic | low | adequate | large | to validate the performance of various tracking methods when more comprehensive target motion information is available. |
UAV | medium | medium | medium | to validate the ability of different methods to track the typical maneuvering trajectories of airborne targets in the absence of maneuvering information. |
Surface Boat | high | deficient | small | to validate the performance of various tracking methods under the conditions of lack of target maneuvering information and lack of training data. |
Error Condition (Azimuth/Pitch/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.001 rad, 0.001 rad, 15 m | 7.1034 | 6.5548 | 5.7835 | 6.5855 |
0.003 rad, 0.003 rad, 25 m | 10.8474 | 10.0600 | 10.1511 | 10.4058 |
0.006 rad, 0.006 rad, 35 m | 14.6329 | 13.7920 | 15.1262 | 15.6328 |
Error Condition (Azimuth/Pitch/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.001 rad, 0.001 rad, 15 m | 6.4875 | 5.9776 | 5.4925 | 6.3487 |
0.003 rad, 0.003 rad, 25 m | 9.4398 | 8.8448 | 9.6851 | 9.8823 |
0.006 rad, 0.006 rad, 35 m | 14.1523 | 12.9611 | 13.8346 | 14.4856 |
Error Condition (Azimuth/Pitch/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.001 rad, 0.001 rad, 15 m | 5.9382 | 5.9053 | 5.1974 | 5.0989 |
0.003 rad, 0.003 rad, 25 m | 9.8312 | 9.7763 | 9.4889 | 9.3737 |
0.006 rad, 0.006 rad, 35 m | 12.7814 | 12.7350 | 14.7790 | 14.1203 |
Error Condition (Azimuth/Pitch/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.01 rad, 0.01 rad, 0.5 m | 0.8167 | 0.8158 | 0.7094 | 0.8072 |
0.03 rad, 0.03 rad, 1.5 m | 2.2619 | 2.2608 | 1.7638 | 1.6830 |
0.05 rad, 0.05 rad, 3.5 m | 4.0122 | 4.0110 | 3.1262 | 2.9188 |
0.07 rad, 0.07 rad, 6.0 m | 5.9267 | 5.9217 | 4.4565 | 3.9794 |
Error Condition (Azimuth/Pitch/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.01 rad, 0.01 rad, 0.5 m | 0.9783 | 0.9802 | 0.7573 | 0.8146 |
0.03 rad, 0.03 rad, 1.5 m | 2.8797 | 2.8766 | 2.2122 | 2.1440 |
0.05 rad, 0.05 rad, 3.5 m | 5.1574 | 5.1518 | 3.9141 | 3.6573 |
0.07 rad, 0.07 rad, 6.0 m | 7.2456 | 7.2540 | 5.4097 | 4.8844 |
Error Condition (Azimuth/Pitch/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.01 rad, 0.01 rad, 0.5 m | 0.8656 | 0.8660 | 0.6854 | 0.8147 |
0.03 rad, 0.03 rad, 1.5 m | 2.6387 | 2.6374 | 2.1030 | 2.0879 |
0.05 rad, 0.05 rad, 3.5 m | 4.9555 | 4.9522 | 3.8335 | 3.5979 |
0.07 rad, 0.07 rad, 6.0 m | 6.4603 | 6.4530 | 4.8063 | 4.4234 |
Error Condition (Azimuth/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.003 rad, 6 m | 4.8891 | 4.8521 | 6.0199 | 5.3103 |
0.007 rad, 14 m | 9.2031 | 8.9553 | 13.6923 | 8.3379 |
0.010 rad, 20 m | 12.9969 | 12.3169 | 20.4941 | 10.95414 |
Error Condition (Azimuth/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.003 rad, 6 m | 4.5609 | 4.5585 | 6.1798 | 6.3821 |
0.007 rad, 14 m | 9.2031 | 8.9553 | 15.80843 | 8.7176 |
0.010 rad, 20 m | 13.2518 | 12.0387 | 23.7324 | 12.3036 |
Error Condition (Azimuth/Distance) | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
0.003 rad, 6 m | 5.6798 | 5.6723 | 7.8045 | 4.6865 |
0.007 rad, 14 m | 9.6845 | 9.6685 | 17.6552 | 9.4866 |
0.010 rad, 20 m | 11.5615 | 11.5356 | 25.5932 | 13.6073 |
Algorithms | IMM | HGMM | DeepMTT | Proposed |
---|---|---|---|---|
Time (ms) | 0.39064 | 0.7031 | 1.7587 | 0.7813 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wu, L.; Xu, J.; Lu, F. A Multi-Model Polynomial-Based Tracking Method for Targets with Complex Maneuvering Patterns. Electronics 2025, 14, 244. https://doi.org/10.3390/electronics14020244
Wang P, Wu L, Xu J, Lu F. A Multi-Model Polynomial-Based Tracking Method for Targets with Complex Maneuvering Patterns. Electronics. 2025; 14(2):244. https://doi.org/10.3390/electronics14020244
Chicago/Turabian StyleWang, Pikun, Ling Wu, Junfei Xu, and Faxing Lu. 2025. "A Multi-Model Polynomial-Based Tracking Method for Targets with Complex Maneuvering Patterns" Electronics 14, no. 2: 244. https://doi.org/10.3390/electronics14020244
APA StyleWang, P., Wu, L., Xu, J., & Lu, F. (2025). A Multi-Model Polynomial-Based Tracking Method for Targets with Complex Maneuvering Patterns. Electronics, 14(2), 244. https://doi.org/10.3390/electronics14020244