Traffic-Aware Intelligent Association and Task Offloading for Multi-Access Edge Computing
Abstract
:1. Introduction
- To avoid the mismatch between the average and actual offloading requests, we propose a deep learning-based multi-step offloading request prediction approach by learning from the past traffic, which includes the offloading requests.
- We propose a computing load balancing scheme over the time horizon so that each ES can make some resources available for accommodating unpredictable requests. This is particularly useful when the prediction of future requests is not perfect, as is the case in general.
- To maximize the offloading performance and fulfill the deadline constraints, we propose a multi-step optimization technique. That is, the proposed method optimizes both resource provisioning and task offloading for multiple future time steps.
- To maximize resource utilization and prevent excessive resource allocations, we propose an optimal network association solution that leads to the efficient use of edge servers.
- To validate the effectiveness of the proposed solution, we implement a time-slotted simulation environment and carry out extensive evaluations along with performance comparisons.
2. Related Work
3. Proposed Idea
3.1. Multi-Step Task-Offloading Prediction
3.2. Optimal Association and Task Offloading
4. Evaluation
4.1. Traffic Offloading Dataset and Prediction Model
4.2. Multi-Step Optimal Resource Provisioning and Task Offloading
- OPT(): the optimal method OPT() proposed in this paper, which optimizes resources and offloads over multiple time steps with deadline constraints.
- OPT()/SSF: the proposed OPT() without optimal BS-user association; the conventional strongest signal first (SSF) association rule [52] is used instead.
- OPT(1): The optimal method OPT(1) proposed in this paper, which optimizes resources and offloading for the current time step only in a greedy manner.
4.2.1. Effects of Multi-Time Step Optimization: Comparison between OPT() and OPT(1)
4.2.2. Effects of Optimal Association: Comparison between OPT() and OPT()/SSF
4.2.3. Effects of Request Prediction Accuracy on OPT()
4.2.4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pew Research Center. Mobile Fact Sheet. 2021. Available online: https://www.pewresearch.org/internet/fact-sheet/mobile/ (accessed on 6 July 2024).
- Statista. Number of Smartphone Users Worldwide from 2016 to 2023. 2023. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 6 July 2024).
- International Data Corporation (IDC). Smartphone Shipments Totaled 1.35 Billion Units in 2021, According to IDC. 2022. Available online: https://www.idc.com/getdoc.jsp?containerId=prUS52032524 (accessed on 6 July 2024).
- Yew, H.T.; Ng, M.F.; Ping, S.Z.; Chung, S.K.; Chekima, A.; Dargham, J.A. Iot Based Real-Time Remote Patient Monitoring System. In Proceedings of the 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), Langkawi, Malaysia, 28–29 February 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 176–179. [Google Scholar]
- Herskovitz, J.; Wu, J.; White, S.; Pavel, A.; Reyes, G.; Guo, A.; Bigham, J.P. Making mobile augmented reality applications accessible. In Proceedings of the 22nd International ACM SIGACCESS Conference on Computers and Accessibility, Virtual Event, Greece, 26–28 October 2020; pp. 1–14. [Google Scholar]
- Chen, Y.L.; Hsu, C.C. Self-regulated mobile game-based English learning in a virtual reality environment. Comput. Educ. 2020, 154, 103910. [Google Scholar] [CrossRef]
- Imran, A.; Posokhova, I.; Qureshi, H.N.; Masood, U.; Riaz, M.S.; Ali, K.; John, C.N.; Hussain, M.I.; Nabeel, M. AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Inform. Med. Unlocked 2020, 20, 100378. [Google Scholar] [CrossRef] [PubMed]
- Vaz, D.; Matos, D.R.; Pardal, M.L.; Correia, M. MIRES: Intrusion Recovery for Applications Based on Backend-As-a-Service. IEEE Trans. Cloud Comput. 2023, 11, 2011–2027. [Google Scholar] [CrossRef]
- Mach, P.; Becvar, Z. Mobile edge computing: A survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 2017, 19, 1628–1656. [Google Scholar] [CrossRef]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A survey on mobile edge computing: The communication perspective. IEEE Commun. Surv. Tutor. 2017, 19, 2322–2358. [Google Scholar] [CrossRef]
- Chen, C.L.; Brinton, C.G.; Aggarwal, V. Latency minimization for mobile edge computing networks. IEEE Trans. Mob. Comput. 2021, 22, 2233–2247. [Google Scholar] [CrossRef]
- Hu, H.; Song, W.; Wang, Q.; Hu, R.Q.; Zhu, H. Energy Efficiency and Delay Tradeoff in an MEC-Enabled Mobile IoT Network. IEEE Internet Things J. 2022, 9, 15942–15956. [Google Scholar] [CrossRef]
- Antonopoulos, N.; Gillam, L. Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2010; Volume 51. [Google Scholar]
- Nugroho, A.K.; Shioda, S.; Kim, T. Optimal Resource Provisioning and Task Offloading for Network-Aware and Federated Edge Computing. Sensors 2023, 23, 9200. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Lin, J.W.; Hsieh, C.T. Delay and QoS Aware Low Complex Optimal Service Provisioning for Edge Computing. IEEE Trans. Veh. Technol. 2023, 72, 1169–1183. [Google Scholar] [CrossRef]
- Kherraf, N.; Alameddine, H.A.; Sharafeddine, S.; Assi, C.M.; Ghrayeb, A. Optimized provisioning of edge computing resources with heterogeneous workload in IoT networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 459–474. [Google Scholar] [CrossRef]
- Xiang, Z.; Deng, S.; Jiang, F.; Gao, H.; Tehari, J.; Yin, J. Computing power allocation and traffic scheduling for edge service provisioning. In Proceedings of the 2020 IEEE International Conference on Web Services (ICWS), Beijing, China, 18–24 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 394–403. [Google Scholar]
- Jiang, H.; Dai, X.; Xiao, Z.; Iyengar, A. Joint task offloading and resource allocation for energy-constrained mobile edge computing. IEEE Trans. Mob. Comput. 2022, 22, 4000–4015. [Google Scholar] [CrossRef]
- Apostolopoulos, P.A.; Tsiropoulou, E.E.; Papavassiliou, S. Risk-aware data offloading in multi-server multi-access edge computing environment. IEEE/ACM Trans. Netw. 2020, 28, 1405–1418. [Google Scholar] [CrossRef]
- Han, B.; Sciancalepore, V.; Xu, Y.; Feng, D.; Schotten, H.D. Impatient queuing for intelligent task offloading in multiaccess edge computing. IEEE Trans. Wirel. Commun. 2022, 22, 59–72. [Google Scholar] [CrossRef]
- Song, H.; Gu, B.; Son, K.; Choi, W. Joint optimization of edge computing server deployment and user offloading associations in wireless edge network via a genetic algorithm. IEEE Trans. Netw. Sci. Eng. 2022, 9, 2535–2548. [Google Scholar] [CrossRef]
- Feng, M.; Krunz, M.; Zhang, W. Joint task partitioning and user association for latency minimization in mobile edge computing networks. IEEE Trans. Veh. Technol. 2021, 70, 8108–8121. [Google Scholar] [CrossRef]
- Charatsaris, P.; Diamanti, M.; Papavassiliou, S. Joint User Association and Resource Allocation for Hierarchical Federated Learning Based on Games in Satisfaction Form. IEEE Open J. Commun. Soc. 2023, 5, 457–471. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Sun, R.; Su, R.; Liu, B. Joint user association and power allocation for minimizing multi-bitrate video transmission delay in mobile-edge computing networks. In Innovative Mobile and Internet Services in Ubiquitous Computing: Proceedings of the 12th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2018), Sydney, NSW, Australia, 3–5 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 467–478. [Google Scholar]
- Qi, Y.; Zhou, Y.; Liu, Y.F.; Liu, L.; Pan, Z. Traffic-aware task offloading based on convergence of communication and sensing in vehicular edge computing. IEEE Internet Things J. 2021, 8, 17762–17777. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Y.; Qiao, J.; Hu, Z. Traffic-Aware Optimization of Task Offloading and Content Caching in the Internet of Vehicles. Appl. Sci. 2023, 13, 13069. [Google Scholar] [CrossRef]
- Oza, P.; Hudson, N.; Chantem, T.; Khamfroush, H. Deadline-aware task offloading for vehicular edge computing networks using traffic light data. ACM Trans. Embed. Comput. Syst. 2024, 23, 1–25. [Google Scholar] [CrossRef]
- Guo, H.; Liu, J.; Lv, J. Toward intelligent task offloading at the edge. IEEE Netw. 2019, 34, 128–134. [Google Scholar] [CrossRef]
- Kim, K.; Lynskey, J.; Kang, S.; Hong, C.S. Prediction based sub-task offloading in mobile edge computing. In Proceedings of the 2019 International Conference on Information Networking (ICOIN), Kuala Lumpur, Malaysia, 9–11 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 448–452. [Google Scholar]
- Zeng, F.; Tang, J.; Liu, C.; Deng, X.; Li, W. Task-offloading strategy based on performance prediction in vehicular edge computing. Mathematics 2022, 10, 1010. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Andrews, A.W. Normal walking speed: A descriptive meta-analysis. Physiotherapy 2011, 97, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Benidis, K.; Rangapuram, S.S.; Flunkert, V.; Wang, Y.; Maddix, D.; Turkmen, C.; Gasthaus, J.; Bohlke-Schneider, M.; Salinas, D.; Stella, L.; et al. Deep learning for time series forecasting: Tutorial and literature survey. ACM Comput. Surv. 2022, 55, 1–36. [Google Scholar] [CrossRef]
- Kim, N.; Balaraman, A.; Lee, K.; Kim, T. Multi-Step Peak Power Forecasting with Constrained Conditional Transformer for a Large-Scale Manufacturing Plant. IEEE Access 2023, 11, 136692–136705. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning Mastery: Vermont, Australia, 2018. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 6000–6010. [Google Scholar]
- Kim, T.; Al-Tarazi, M.; Lin, J.W.; Choi, W. Optimal container migration for mobile edge computing: Algorithm, system design and implementation. IEEE Access 2021, 9, 158074–158090. [Google Scholar] [CrossRef]
- Kim, T.; Chang, J.M. Profitable and energy-efficient resource optimization for heterogeneous cloud-based radio access networks. IEEE Access 2019, 7, 34719–34737. [Google Scholar] [CrossRef]
- Kim, T.; Chang, J.M. QoS-aware energy-efficient association and resource scheduling for HetNets. IEEE Trans. Veh. Technol. 2017, 67, 650–664. [Google Scholar] [CrossRef]
- Amazon Web Services, High Availability and Scalability on AWS—Real-Time Communication on AWS, Amazon Web Services. 2024. Available online: https://docs.aws.amazon.com/whitepapers/latest/real-time-communication-on-aws/high-availability-and-scalability-on-aws.html (accessed on 26 July 2024).
- Microsoft Azure, Azure Availability Zones—High Availability at Scale. Available online: https://azure.microsoft.com/en-us/explore/global-infrastructure/availability-zones#features (accessed on 25 July 2024).
- Docker Inc. Docker. Available online: https://www.docker.com/ (accessed on 6 July 2024).
- Docker Inc. Runtime Options with Memory, CPUs, and GPUs. Available online: https://docs.docker.com/config/containers/resource_constraints/ (accessed on 6 July 2024).
- Wang, H.; Xu, F.; Li, Y.; Zhang, P.; Jin, D. Understanding mobile traffic patterns of large scale cellular towers in urban environment. In Proceedings of the 2015 Internet Measurement Conference, Tokyo, Japan, 28–30 October 2015; pp. 225–238. [Google Scholar]
- James, J.F. A Student’s Guide to Fourier Transforms with Applications in Physics and Engineering; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Roonizi, A.K.; Sassi, R. ECG signal decomposition using Fourier analysis. EURASIP J. Adv. Signal Process. 2024, 2024, 79. [Google Scholar] [CrossRef]
- Huang, H.; Chen, J.; Sun, R.; Wang, S. Short-term traffic prediction based on time series decomposition. Phys. A Stat. Mech. Its Appl. 2022, 585, 126441. [Google Scholar] [CrossRef]
- Shi, J.; Leau, Y.-B.; Li, K.; Park, Y.-J.; Yan, Z. Optimization and Decomposition Methods in Network Traffic Prediction Model: A Review and Discussion. IEEE Access 2020, 8, 202858–202871. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB, Version: 9.13.0 (R2022b); The MathWorks Inc.: Portola Valley, CA, USA, 2022. [Google Scholar]
- Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1; CVX Research, Inc.: Austin, TX, USA, 2014. [Google Scholar]
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, Version 11.0; Gurobi Optimization, LLC: Beaverton, OR, USA, 2024. [Google Scholar]
- Khan, M.A.; Hamila, R.; Gastli, A.; Kiranyaz, S.; Al-Emadi, N.A. ML-based handover prediction and AP selection in cognitive Wi-Fi networks. J. Netw. Syst. Manag. 2022, 30, 72. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Tensorflow, Keras: The High-Level API for TensorFlow, Tensorflow. Available online: https://www.tensorflow.org/guide/keras (accessed on 15 June 2024).
- Gurobi Optimization, Mixed-Integer Programming (MIP)—A Primer on the Basics, Gurobi Optimization. Available online: https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics (accessed on 15 June 2024).
Abbreviation | Definition |
---|---|
BS | Base Station |
CC | Cloud Computing |
EC | Edge Computing |
ES | Edge Server |
MEC | Mobile/Multi-access Edge Computing |
QoS | Quality of Service |
Reference | Real Value- Based Optimization | Deadline Awareness | Multi-Step Offloading Planning | Multi-Steps Resource Provisioning |
---|---|---|---|---|
Kheraf et al. [16] | ||||
Xiang et al. [17] | ✓ | |||
Jiang et al. [18] | ✓ | |||
Apostolopoulus et al. [19] | ||||
Han et al. [20] | ✓ | |||
Song et al. [21] | ✓ | ✓ | ||
Feng et al. [22] | ||||
Charatsaris et al. [23] | ✓ | |||
Wang et al. [24] | ✓ | |||
Qi et al. [25] | ✓ | ✓ | ||
Wang et al. [26] | ✓ | ✓ | ||
Oza et al. [27] | ✓ | ✓ | ||
Guo et al. [28] | ✓ | ✓ | ||
Kim et al. [29] | ✓ | |||
Zeng et al. [30] | ✓ | ✓ | ✓ | |
our work | ✓ | ✓ | ✓ | ✓ |
Notation | Definition |
---|---|
t | Index of time step whose length is |
BS-user accessibility matrix at t | |
Association capacity of BS b | |
Normalized, available computing capacity of users at t | |
Normalized, available computing capacity of ESs at t | |
Normalized, available computing capacity of cloud at t | |
Deadlines of users’ requests at t | |
Portion of tasks to be processed locally at t | |
Portion of tasks to be offloaded to ESs at t | |
Portion of tasks to be offloaded to cloud at t | |
User u’s task-offloading request history | |
BS-user association indication matrix at t | |
Scalar determining round-trip latency to the BS (ES), being | |
Scalar determining round-trip latency to cloud, being | |
Number of BSs | |
Number of ESs | |
Forecasting horizon length | |
Lookback window length | |
Number of time steps over which an optimal resource scheduling is carried out | |
Number of users | |
Binary task offloading decision vector for local processing at t | |
Binary task offloading decision matrix between an ES and user at t | |
Binary task offloading decision vector for cloud processing at t | |
Task-offloading requests of users at t |
Request Pattern | 1DCNN | LSTM | Transformer |
---|---|---|---|
Sine | 0.0350 | 0.0337 | 0.0350 |
Triangle | 0.0336 | 0.0337 | 0.0347 |
Sawtooth | 0.0328 | 0.0575 | 0.0349 |
Random | 0.2874 | 0.2869 | 0.2868 |
mean (total) | 0.0972 | 0.1030 | 0.0979 |
mean (except Random) | 0.0338 | 0.0416 | 0.0349 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nugroho, A.K.; Kim, T. Traffic-Aware Intelligent Association and Task Offloading for Multi-Access Edge Computing. Electronics 2024, 13, 3130. https://doi.org/10.3390/electronics13163130
Nugroho AK, Kim T. Traffic-Aware Intelligent Association and Task Offloading for Multi-Access Edge Computing. Electronics. 2024; 13(16):3130. https://doi.org/10.3390/electronics13163130
Chicago/Turabian StyleNugroho, Avilia Kusumaputeri, and Taewoon Kim. 2024. "Traffic-Aware Intelligent Association and Task Offloading for Multi-Access Edge Computing" Electronics 13, no. 16: 3130. https://doi.org/10.3390/electronics13163130
APA StyleNugroho, A. K., & Kim, T. (2024). Traffic-Aware Intelligent Association and Task Offloading for Multi-Access Edge Computing. Electronics, 13(16), 3130. https://doi.org/10.3390/electronics13163130