A Deep Learning Approach with Extensive Sentiment Analysis for Quantitative Investment
Abstract
:1. Introduction
2. Method
2.1. Stock Trading and News Data
2.2. Stock Selection via Fundamental Analysis
2.3. Data Preprocessing
2.4. Deep Hybrid Model
2.4.1. News Representation and Sentiment Analysis
2.4.2. Stock Prediction Model
2.4.3. Trading Strategy
- Select the top 50 stocks with the highest prediction accuracy from the validation set.
- Calculate the momentum of these selected stocks for momentum rotation trading. Here, momentum is defined as the slope of the 20-day closing price series. The slope for each day is computed by fitting a linear regression to the 20-day closing price sequence using the formula:
- Sort the slopes and select the top 60% of stocks to form a portfolio. The deep learning model is then used to predict whether the price will rise on the day. If a stock is predicted to rise, it is bought.
- For stocks held in the portfolio, if the deep learning model predicts a price decrease, the stock is sold.
- Implement profit-taking and stop-loss strategies. Stocks are sold if their returns exceed 22% or if their prices decline by 8%.
2.4.4. Backtesting Evaluation Metrics
3. Results and Discussion
3.1. News Sentiment Analysis
3.2. Stock Prediction Performance
3.3. Backtesting Evaluation
3.4. Backtesting on Separate Markets
3.5. Performance Comparison with Baselines
3.6. Effectiveness of News Sentiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Weng, B.; Ahmed, M.A.; Megahed, F.M. Stock market one-day ahead movement prediction using disparate data sources. Expert Syst. Appl. 2017, 79, 153–163. [Google Scholar] [CrossRef]
- Chen, M.Y.; Chen, B.T. A hybrid fuzzy time series model based on granular computing for stock price forecasting. Inf. Sci. 2015, 294, 227–241. [Google Scholar] [CrossRef]
- Ballings, M.; Van den Poel, D.; Hespeels, N.; Gryp, R. Evaluating multiple classifiers for stock price direction prediction. Expert Syst. Appl. 2015, 42, 7046–7056. [Google Scholar] [CrossRef]
- Kim, S.; Ku, S.; Chang, W.; Song, J.W. Predicting the direction of US stock prices using effective transfer entropy and machine learning techniques. IEEE Access 2020, 8, 111660–111682. [Google Scholar] [CrossRef]
- Yun, K.K.; Yoon, S.W.; Won, D. Prediction of stock price direction using a hybrid GA-XGBoost algorithm with a three-stage feature engineering process. Expert Syst. Appl. 2021, 186, 115716. [Google Scholar] [CrossRef]
- Carta, S.M.; Consoli, S.; Piras, L.; Podda, A.S.; Recupero, D.R. Explainable machine learning exploiting news and domain-specific lexicon for stock market forecasting. IEEE Access 2021, 9, 30193–30205. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, J.; Zhang, L.; Liu, C. An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Phys. A Stat. Mech. Its Appl. 2020, 541, 122272. [Google Scholar] [CrossRef]
- Di Persio, L.; Honchar, O. Artificial neural networks architectures for stock price prediction: Comparisons and applications. Int. J. Circuits Syst. Signal Process. 2016, 10, 403–413. [Google Scholar]
- Chong, E.; Han, C.; Park, F.C. Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Syst. Appl. 2017, 83, 187–205. [Google Scholar] [CrossRef]
- Singh, R.; Srivastava, S. Stock prediction using deep learning. Multimed. Tools Appl. 2017, 76, 18569–18584. [Google Scholar] [CrossRef]
- Cao, J.; Wang, J. Stock price forecasting model based on modified convolution neural network and financial time series analysis. Int. J. Commun. Syst. 2019, 32, e3987. [Google Scholar] [CrossRef]
- Gunduz, H.; Yaslan, Y.; Cataltepe, Z. Intraday prediction of Borsa Istanbul using convolutional neural networks and feature correlations. Knowl. Based Syst. 2017, 137, 138–148. [Google Scholar] [CrossRef]
- Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res. 2018, 270, 654–669. [Google Scholar] [CrossRef]
- Mukherjee, S.; Sadhukhan, B.; Sarkar, N.; Roy, D.; De, S. Stock market prediction using deep learning algorithms. CAAI Trans. Intell. Technol. 2021, 8, 82–94. [Google Scholar] [CrossRef]
- Agrawal, M.; Shukla, P.K.; Nair, R.; Nayyar, A.; Masud, M. Stock Prediction Based on Technical Indicators Using Deep Learning Model. Comput. Mater. Contin. 2022, 70, 287–304. [Google Scholar] [CrossRef]
- Albahli, S.; Awan, A.; Nazir, T.; Irtaza, A.; Alkhalifah, A.; Albattah, W. A deep learning method DCWR with HANet for stock market prediction using news articles. Complex Intell. Syst. 2022, 8, 2471–2487. [Google Scholar] [CrossRef]
- Yadav, K.; Yadav, M.; Saini, S. Stock values predictions using deep learning based hybrid models. CAAI Trans. Intell. Technol. 2022, 7, 107–116. [Google Scholar] [CrossRef]
- Banik, S.; Sharma, N.; Mangla, M.; Mohanty, S.N.; Shitharth, S. LSTM based decision support system for swing trading in stock market. Knowl. -Based Syst. 2022, 239, 107994. [Google Scholar] [CrossRef]
- Ahmed, S.; Alshater, M.M.; El Ammari, A.; Hammami, H. Artificial intelligence and machine learning in finance: A bibliometric review. Res. Int. Bus. Financ. 2022, 61, 101646. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, Y.; Kim, H.Y. Stock market forecasting using a multi-task approach integrating long short-term memory and the random forest framework. Appl. Soft Comput. 2022, 114, 108106. [Google Scholar] [CrossRef]
- Kanwal, A.; Lau, M.F.; Ng, S.P.; Sim, K.Y.; Chandrasekaran, S. BiCuDNNLSTM-1dCNN—A hybrid deep learning-based predictive model for stock price prediction. Expert Syst. Appl. 2022, 202, 117123. [Google Scholar] [CrossRef]
- Tao, M.; Gao, S.; Mao, D.; Huang, H. Knowledge graph and deep learning combined with a stock price prediction network focusing on related stocks and mutation points. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 4322–4334. [Google Scholar] [CrossRef]
- Patil, P.R.; Parasar, D.; Charhate, S. Wrapper-Based Feature Selection and Optimization-Enabled Hybrid Deep Learning Framework for Stock Market Prediction. Int. J. Inf. Technol. Decis. Mak. 2023, 1–26. [Google Scholar] [CrossRef]
- Li, M.; Zhu, Y.; Shen, Y.; Angelova, M. Clustering-enhanced stock price prediction using deep learning. World Wide Web 2023, 26, 207–232. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, C.; Zhang, Y.; Bao, F.; Zhang, C.; Liu, P. Transformer-based attention network for stock movement prediction. Expert Syst. Appl. 2022, 202, 117239. [Google Scholar] [CrossRef]
- Minh, D.L.; Sadeghi-Niaraki, A.; Huy, H.D.; Min, K.; Moon, H. Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network. IEEE Access 2018, 6, 55392–55404. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Shynkevich, Y.; McGinnity, T.M.; Coleman, S.A.; Belatreche, A. Forecasting movements of health-care stock prices based on different categories of news articles using multiple kernel learning. Decis. Support Syst. 2016, 85, 74–83. [Google Scholar] [CrossRef]
- Feuerriegel, S.; Gordon, J. Long-term stock index forecasting based on text mining of regulatory disclosures. Decis. Support Syst. 2018, 112, 88–97. [Google Scholar] [CrossRef]
- Shi, L.; Teng, Z.; Wang, L.; Zhang, Y.; Binder, A. DeepClue: Visual interpretation of text-based deep stock prediction. IEEE Trans. Knowl. Data Eng. 2018, 31, 1094–1108. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, S.; Xu, Y.; Li, Q.; Li, T. A novel data-driven stock price trend prediction system. Expert Syst. Appl. 2018, 97, 60–69. [Google Scholar] [CrossRef]
- Carosia, A.E.O.; Coelho, G.P.; Silva, A.E.A. Analyzing the Brazilian financial market through Portuguese sentiment analysis in social media. Appl. Artif. Intell. 2020, 34, 1–19. [Google Scholar] [CrossRef]
- Carta, S.; Consoli, S.; Piras, L.; Podda, A.S.; Recupero, D.R. Event detection in finance using hierarchical clustering algorithms on news and tweets. PeerJ Comput. Sci. 2021, 7, e438. [Google Scholar] [CrossRef]
- Huang, J.Y.; Liu, J.H. Using social media mining technology to improve stock price forecast accuracy. J. Forecast. 2020, 39, 104–116. [Google Scholar] [CrossRef]
- Lin, W.C.; Tsai, C.F.; Chen, H. Factors affecting text mining based stock prediction: Text feature representations, machine learning models, and news platforms. Appl. Soft Comput. 2022, 130, 109673. [Google Scholar] [CrossRef]
- Lin, Y.L.; Lai, C.J.; Pai, P.F. Using deep learning techniques in forecasting stock markets by hybrid data with multilingual sentiment analysis. Electronics 2022, 11, 3513. [Google Scholar] [CrossRef]
- Jing, N.; Wu, Z.; Wang, H. A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Syst. Appl. 2021, 178, 115019. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Zou, Z.; Weng, T.H. S_I_LSTM: Stock price prediction based on multiple data sources and sentiment analysis. Connect. Sci. 2022, 34, 44–62. [Google Scholar] [CrossRef]
- Daradkeh, M.K. A hybrid data analytics framework with sentiment convergence and multi-feature fusion for stock trend prediction. Electronics 2022, 11, 250. [Google Scholar] [CrossRef]
- Swathi, T.; Kasiviswanath, N.; Rao, A.A. An optimal deep learning-based LSTM for stock price prediction using twitter sentiment analysis. Appl. Intell. 2022, 52, 13675–13688. [Google Scholar] [CrossRef]
- Gao, R.; Cui, S.; Xiao, H.; Fan, W.; Zhang, H.; Wang, Y. Integrating the sentiments of multiple news providers for stock market index movement prediction: A deep learning approach based on evidential reasoning rule. Inf. Sci. 2022, 615, 529–556. [Google Scholar] [CrossRef]
- Herrera, G.P.; Constantino, M.; Su, J.J.; Naranpanawa, A. Renewable energy stocks forecast using Twitter investor sentiment and deep learning. Energy Econ. 2022, 114, 106285. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, G. Deep Learning-based Integrated Framework for stock price movement prediction. Appl. Soft Comput. 2023, 133, 109921. [Google Scholar] [CrossRef]
- Ashtiani, M.N.; Raahemi, B. News-based intelligent prediction of financial markets using text mining and machine learning: A systematic literature review. Expert Syst. Appl. 2023, 217, 119509. [Google Scholar] [CrossRef]
- Shilpa, B.L.; Shambhavi, B.R. Combined deep learning classifiers for stock market prediction: Integrating stock price and news sentiments. Kybernetes 2023, 52, 748–773. [Google Scholar]
- Ma, Y.; Mao, R.; Lin, Q.; Wu, P.; Cambria, E. Multi-source aggregated classification for stock price movement prediction. Inf. Fusion 2023, 91, 515–528. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhang, L.; Yang, P.; Gao, X.; Wu, Z.; Zhang, J. Fengshenbang 1.0: Being the foundation of Chinese cognitive intelligence. arXiv 2022, arXiv:2209.02970. [Google Scholar]
- Zhang, J.; Zhao, Y.; Saleh, M.; Liu, P. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. In Proceedings of the 37th International Conference on Machine Learning, Online, 13 July 2020; pp. 11328–11339. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Akita, R.; Yoshihara, A.; Matsubara, T.; Uehara, K. Deep learning for stock prediction using numerical and textual information. In Proceedings of the 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), Okayama, Japan, 26–29 June 2016; pp. 1–6. [Google Scholar]
- Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of language representations. arXiv 2019, arXiv:1909.11942. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd international Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lehmann, B.N. Fads, martingales, and market efficiency. Q. J. Econ. 1990, 105, 128. [Google Scholar] [CrossRef]
CODE | PE | PB | PS | ROE | PM | IN | SCORE |
---|---|---|---|---|---|---|---|
000820 | 0.4385 | 0.9855 | 0.9970 | 1.0000 | 1.0000 | 0.0133 | 0.8145 |
300226 | 0.4337 | 0.9983 | 1.0000 | 0.7974 | 0.3132 | 0.3378 | 0.6848 |
600755 | 0.4362 | 0.9999 | 1.0000 | 0.7973 | 0.3133 | 0.2616 | 0.6777 |
Technical Indicators | Abbreviation |
---|---|
Moving average (5) | MA (5) |
Moving average (30) | MA (30) |
Moving average (60) | MA (60) |
Exponential moving average (5) | EMA (5) |
Exponential moving average (30) | EMA (30) |
Exponential moving average (60) | EMA (60) |
Moving average convergence/divergence (6, 15, 6) | MACD (6, 15, 6) |
Moving average convergence/divergence (12, 26, 9) | MACD (12, 26, 9) |
Moving average convergence/divergence (30, 60, 30) | MACD (30, 60, 30) |
Relative strength index (14) | RSI (14) |
Williams’ %R (14) | WILLR (14) |
Momentum index (14) | MOM (14) |
Chande momentum oscillator (14) | CMO (14) |
Ultimate oscillator (7, 14, 28) | ULTOSC (7, 14, 28) |
On balance volume | OBV |
Chaikin A/D oscillator (3, 10) | ADOSC (3, 10) |
Threshold | Title | Title + Content |
---|---|---|
0.9 | 9.7% | 1.6% |
0.8 | 22.9% | 6.2% |
0.7 | 39.7% | 15.7% |
Model | LSTM | Transformer | |||
---|---|---|---|---|---|
Group | AUC | Recall | AUC | Recall | |
Vanilla | 83.19% | 65.30% | 70.79% | 55.78% | |
Title | 82.69% | 77.67% | 72.80% | 59.64% | |
Title + Content | 85.43% | 80.94% | 78.16% | 65.02% |
Group | LSTM | Transformer | ||
---|---|---|---|---|
ARR | MDR | ARR | MDR | |
Vanilla | 17.56% | 11.19% | 15.02% | 5.95% |
Title | 21.66% | 7.29% | 21.33% | 6.27% |
Title + Content | 32.49% | 4.04% | 27.29% | 3.63% |
Group | LSTM | Transformer | ||
---|---|---|---|---|
ARR | MDR | ARR | MDR | |
Vanilla | 18.95% | 21.18% | 15.41% | 6.45% |
Title | 24.04% | 22.55% | 19.89% | 7.36% |
Title + Content | 29.92% | 5.46% | 26.24% | 4.14% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Hu, C.; Luo, Y. A Deep Learning Approach with Extensive Sentiment Analysis for Quantitative Investment. Electronics 2023, 12, 3960. https://doi.org/10.3390/electronics12183960
Li W, Hu C, Luo Y. A Deep Learning Approach with Extensive Sentiment Analysis for Quantitative Investment. Electronics. 2023; 12(18):3960. https://doi.org/10.3390/electronics12183960
Chicago/Turabian StyleLi, Wang, Chaozhu Hu, and Youxi Luo. 2023. "A Deep Learning Approach with Extensive Sentiment Analysis for Quantitative Investment" Electronics 12, no. 18: 3960. https://doi.org/10.3390/electronics12183960
APA StyleLi, W., Hu, C., & Luo, Y. (2023). A Deep Learning Approach with Extensive Sentiment Analysis for Quantitative Investment. Electronics, 12(18), 3960. https://doi.org/10.3390/electronics12183960