Terahertz Technologies and Its Applications
1. Introduction
2. In This Special Issue
Funding
Acknowledgments
Conflicts of Interest
References
- Pham, H.H.N.; Hisatake, S.; Minin, O.V.; Nagatsuma, T.; Minin, I.V. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube. APL Photonics 2017, 2, 056106. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhou, Z.; Zhong, J.; Shi, Z.; Mao, Y.; Li, H.; Cao, J.; Tao, T.H. Implantable, Degradable, Therapeutic Terahertz Metamaterial Devices. Small 2020, 16, 2000294. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, J.F.; Withayachumnankul, W.; Al-Naib, I. A review on thin-film sensing with terahertz waves. J. Infrared Millim. Terahertz Waves 2012, 33, 245–291. [Google Scholar]
- Pacheco-Peña, V.; Engheta, N.; Kuznetsov, S.; Gentselev, A.; Beruete, M. Experimental Realization of an Epsilon-Near-Zero Graded-Index Metalens at Terahertz Frequencies. Phys. Rev. Appl. 2017, 8, 034036. [Google Scholar] [CrossRef]
- Pacheco-Peña, V.; Beruete, M.; Minin, I.V.; Minin, O.V. Terajets produced by dielectric cuboids. Appl. Phys. Lett. 2014, 105, 084102. [Google Scholar] [CrossRef] [Green Version]
- Freer, S.; Gorodetsky, A.; Navarro-Cia, M. Beam Profiling of a Commercial Lens-Assisted Terahertz Time Domain Spectrometer. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 90–100. [Google Scholar] [CrossRef]
- Karl, N.J.; Mckinney, R.W.; Monnai, Y.; Mendis, R.; Mittleman, D.M. Frequency-division multiplexing in the terahertz range using a leaky-wave antenna. Nat. Photonics 2015, 9, 717–720. [Google Scholar] [CrossRef]
- Gutiérrez, J.; Zeljami, K.; Fernández, T.; Pascual, J.P.; Tazón, A. Accurately modeling of zero biased schottky-diodes at millimeter-wave frequencies. Electronics 2019, 8, 696. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.; Zeng, Y.; Yang, Q.; Deng, B.; Wang, H.; Qin, Y. Improvement in SNR by adaptive range gates for RCS measurements in the THz region. Electronics 2019, 8, 805. [Google Scholar] [CrossRef] [Green Version]
- Meng, J.; Zhang, D.; Ji, G.; Yao, C.; Jiang, C.; Liu, S. Design of a 335 GHz frequency multiplier source based on two schemes. Electronics 2019, 8, 948. [Google Scholar] [CrossRef] [Green Version]
- Mamrashev, A.; Minakov, F.; Maximov, L.; Nikolaev, N.; Chapovsky, P. Correction of optical delay line errors in terahertz time-domain spectroscopy. Electronics 2019, 8, 1408. [Google Scholar]
- Kuznetsov, K.; Klochkov, A.; Leontyev, A.; Klimov, E.; Pushkarev, S.; Galiev, G.; Kitaeva, G. Improved InGaAs and InGaAs/InAlAs Photoconductive Antennas Based on (111)-Oriented Substrates. Electronics 2020, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Meng, T.; Lu, Y.; Ren, J.; Zhao, G.; Liu, H.; Yang, J.; Huang, R. Nondestructive Testing of Hollowing Deterioration of the Yungang Grottoes Based on THz-TDS. Electronics 2020, 9, 625. [Google Scholar] [CrossRef] [Green Version]
- Im, K.-H.; Kim, S.-K.; Jung, J.-A.; Cho, Y.-T.; Woo, Y.-D.; Chiou, C.-P. NDE Terahertz Wave Techniques for Measurement of Defect Detection on Composite Panels of Honeycomb Sandwiches. Electronics 2020, 9, 1360. [Google Scholar] [CrossRef]
- Hirakawa, Y.; Yasumoto, Y.; Gondo, T.; Sone, R.; Morichika, T.; Minato, T.; Hojo, M. Application of Terahertz Spectroscopy to Rubber Products: Evaluation of Vulcanization and Silica Macro Dispersion. Electronics 2020, 9, 669. [Google Scholar]
- Ji, G.; Zhang, D.; Meng, J.; Liu, S.; Yao, C. Design and Measurement of a 0.67 THz Biased Sub-Harmonic Mixer. Electronics 2020, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Lyu, N.; Zuo, J.; Zhao, Y.; Zhang, C. Terahertz synthetic aperture imaging with a light field imaging system. Electronics 2020, 9, 830. [Google Scholar] [CrossRef]
- Zhao, F.; Mao, L.; Guo, W.; Xie, S.; TH Tee, C.A. On-Chip Terahertz Detector Designed with Inset-Feed Rectangular Patch Antenna and Catadioptric Lens. Electronics 2020, 9, 1049. [Google Scholar] [CrossRef]
- Xu, L.-L.; Fan, Y.-X.; Liu, H.; Zhang, T.; Tao, Z.-Y. Terahertz Displacement Sensing Based on Interface States of Hetero-Structures. Electronics 2020, 9, 1213. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Hong, J.-P. A 350-GHz Coupled Stack Oscillator with −0.8 dBm Output Power in 65-nm Bulk CMOS Process. Electronics 2020, 9, 1214. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco-Peña, V. Terahertz Technologies and Its Applications. Electronics 2021, 10, 268. https://doi.org/10.3390/electronics10030268
Pacheco-Peña V. Terahertz Technologies and Its Applications. Electronics. 2021; 10(3):268. https://doi.org/10.3390/electronics10030268
Chicago/Turabian StylePacheco-Peña, Victor. 2021. "Terahertz Technologies and Its Applications" Electronics 10, no. 3: 268. https://doi.org/10.3390/electronics10030268
APA StylePacheco-Peña, V. (2021). Terahertz Technologies and Its Applications. Electronics, 10(3), 268. https://doi.org/10.3390/electronics10030268