Coupled Information–Epidemic Spreading Dynamics with Selective Mass Media
Abstract
:1. Introduction
2. Model Description
3. Theoretical Analysis
3.1. Microscopic Markov Chain Approach
3.2. Threshold Analysis
4. Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tangcharoensathien, V.; Calleja, N.; Nguyen, T.; Purnat, T.; D’Agostino, M.; Garcia-Saiso, S.; Landry, M.; Rashidian, A.; Hamilton, C.; AbdAllah, A.; et al. Framework for Managing the COVID-19 Infodemic: Methods and Results of an Online, Crowdsourced WHO Technical Consultation. J. Med. Internet Res. 2020, 22, e19659. [Google Scholar] [CrossRef]
- Cirrincione, L.; Plescia, F.; Ledda, C.; Rapisarda, V.; Martorana, D.; Lacca, G.; Argo, A.; Zerbo, S.; Vitale, E.; Vinnikov, D.V.; et al. COVID-19 Pandemic: New Prevention and Protection Measures. Sustainability 2022, 14, 4766. [Google Scholar] [CrossRef]
- Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020, 24, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.M.A.d.O. Information about the new coronavirus disease (COVID-19). Radiol. Bras. 2020, 53, V–VI. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alotiby, A. Prevalence and Perception Among Saudi Arabian Population About Resharing of Information on Social Media Regarding Natural Remedies as Protective Measures Against COVID-19. Int. J. Gen. Med. 2021, 14, 5127–5137. [Google Scholar] [CrossRef]
- Khosabordee, P. Coronavirus Disease 2019 (COVID-19) Situation in Thailand. Int. J. Curr. Sci. Res. Rev. 2022, 5, 2900–2906. [Google Scholar] [CrossRef]
- Gao, J.; Yin, Y.; Jones, B.F.; Wang, D. Quantifying policy responses to a global emergency: Insights from the COVID-19 pandemic. arXiv 2020, arXiv:2006.13853. [Google Scholar] [CrossRef]
- Yin, Y.; Gao, J.; Jones, B.F.; Wang, D. Coevolution of policy and science during the pandemic. Science 2021, 371, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yan, Z. The impact of multiple information on coupled awareness-epidemic dynamics in multiplex networks. Phys. A Stat. Mech. Its Appl. 2018, 491, 45–54. [Google Scholar] [CrossRef]
- Shi, T.; Long, T.; Pan, Y.; Zhang, W.; Dong, C.; Yin, Q. Effects of asymptomatic infection on the dynamical interplay between behavior and disease transmission in multiplex networks. Phys. A Stat. Mech. Its Appl. 2019, 536, 121030. [Google Scholar] [CrossRef]
- Gu, W.; Gao, F.; Lou, X.; Zhang, J. Discovering latent node Information by graph attention network. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Gong, K.; Wang, R.; Cai, S.; Wang, W. Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics. Appl. Math. Comput. 2020, 385, 125428. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.K. Information spreading on dynamic social networks. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 896–904. [Google Scholar] [CrossRef] [Green Version]
- Arnaboldi, V.; Conti, M.; Passarella, A.; Dunbar, R.I. Online Social Networks and information diffusion: The role of ego networks. Online Soc. Netw. Media 2017, 1, 44–55. [Google Scholar] [CrossRef]
- Jain, K.; Bhatnagar, V.; Prasad, S.; Kaur, S. Coupling fear and contagion for modeling epidemic dynamics. IEEE Trans. Netw. Sci. Eng. 2022, 10, 20–34. [Google Scholar] [CrossRef]
- Li, W.; Xue, X.; Pan, L.; Lin, T.; Wang, W. Competing spreading dynamics in simplicial complex. Appl. Math. Comput. 2022, 412, 126595. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Z.; Zhao, D.; Xia, C.; Perc, M. Diffusion of resources and their impact on epidemic spreading in multilayer networks with simplicial complexes. Chaos Solitons Fractals 2022, 164, 112734. [Google Scholar] [CrossRef]
- Velásquez-Rojas, F.; Ventura, P.C.; Connaughton, C.; Moreno, Y.; Rodrigues, F.A.; Vazquez, F. Disease and information spreading at different speeds in multiplex networks. Phys. Rev. E 2020, 102, 022312. [Google Scholar] [CrossRef]
- Nie, Y.; Zhong, X.; Wu, T.; Liu, Y.; Lin, T.; Wang, W. Effects of network temporality on coevolution spread epidemics in higher-order network. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 2871–2882. [Google Scholar] [CrossRef]
- Wang, J.W.; Zhang, H.F.; Ma, X.J.; Wang, J.; Ma, C.; Zhu, P.C. Privacy-preserving identification of the influential nodes in networks. Int. J. Mod. Phys. C 2023, 2350128. [Google Scholar] [CrossRef]
- Gao, L.; Li, R.; Shu, P.; Wang, W.; Gao, H.; Cai, S. Effects of individual popularity on information spreading in complex networks. Phys. A Stat. Mech. Its Appl. 2018, 489, 32–39. [Google Scholar] [CrossRef]
- Dennis, L.A.; Fu, Y.; Slavkovik, M. Markov chain model representation of information diffusion in social networks. J. Log. Comput. 2022, 32, 1195–1211. [Google Scholar] [CrossRef]
- Nasiri, E.; Berahmand, K.; Samei, Z.; Li, Y. Impact of Centrality Measures on the Common Neighbors in Link Prediction for Multiplex Networks. Big Data 2022, 10, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, Y.; Zhang, N.; Yang, H.; Wang, W. Influence of heterogeneity of infection thresholds on epidemic spreading with neighbor resource supporting. Chaos 2022, 32, 083124. [Google Scholar] [CrossRef]
- Li, W.; Cai, M.; Zhong, X.; Liu, Y.; Lin, T.; Wang, W. Coevolution of epidemic and infodemic on higher-order networks. Chaos Solitons Fractals 2023, 168, 113102. [Google Scholar] [CrossRef]
- Brodka, P.; Musial, K.; Jankowski, J. Interacting spreading processes in multilayer networks: A systematic review. IEEE Access 2020, 8, 10316–10341. [Google Scholar] [CrossRef]
- Bagnoli, F.; Massaro, E. Epidemic spreading and risk perception in multiplex networks: A self-organizedpercolation method. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014, 90, 052817. [Google Scholar] [CrossRef] [Green Version]
- Masoomy, H.; Chou, T.; Böttcher, L. Impact of random and targeted disruptions on information diffusion during outbreaks. arXiv 2023, arXiv:2301.00748. [Google Scholar] [CrossRef] [PubMed]
- Kabir, K.A.; Kuga, K.; Tanimoto, J. Analysis of SIR epidemic model with information spreading of awareness. Chaos Solitons Fractals 2019, 119, 118–125. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Yue, J.; Duan, X.; Tang, M. Coevolving spreading dynamics of negative information and epidemic on multiplex networks. Nonlinear Dyn. 2022, 110, 3881–3891. [Google Scholar] [CrossRef]
- Wang, J.; Cai, S.; Wang, W.; Zhou, T. Link cooperation effect of cooperative epidemics on complex networks. Appl. Math. Comput. 2023, 437, 127537. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, W.; Wang, R.; Cai, S.; Wu, D.; Wang, W.; Chen, X. Effects of the information-driven awareness on epidemic spreading on multiplex networks. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 073123. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, Y.; Tang, M.; Yue, J. Asymmetrically interacting dynamics with mutual confirmation from multi-source on multiplex networks. Inf. Sci. 2022, 619, 478–490. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.; Tao, X.; Xiao, J.; Wang, W.; Lai, Y.C. Anomalous role of information diffusion in epidemic spreading. Phys. Rev. Res. 2021, 3, 013157. [Google Scholar] [CrossRef]
- Hu, W.; Xia, X.; Ding, X.; Zhang, X.; Zhong, K.; Zhang, H.F. SMPC-Ranking: A Privacy-Preserving Method on Identifying Influential Nodes in Multiple Private Networks. IEEE Trans. Syst. Man, Cybern. Syst. 2023, 53, 2971–2982. [Google Scholar] [CrossRef]
- Huang, P.; Chen, X.L.; Tang, M.; Cai, S.M. Coupled Dynamic Model of Resource Diffusion and Epidemic Spreading in Time-Varying Multiplex Networks. Complexity 2021, 2021, 6629105. [Google Scholar] [CrossRef]
- Guo, Y.; Tu, L.; Shen, H.; Chai, L. Transmission dynamics of disease spreading in multilayer networks with mass media. Phys. Rev. E 2022, 106, 034307. [Google Scholar] [CrossRef]
- Wu, Q.; Hadzibeganovic, T.; Han, X.P. Coupled dynamics of endemic disease transmission and gradual awareness diffusion in multiplex networks. arXiv 2022, arXiv:2210.11819. [Google Scholar]
- Wang, J.; Yang, C.; Chen, B. The interplay between disease spreading and awareness diffusion in multiplex networks with activity-driven structure. Chaos 2022, 32, 073104. [Google Scholar] [CrossRef]
- Bodaghi, A.; Goliaei, S.; Salehi, M. The number of followings as an influential factor in rumor spreading. Appl. Math. Comput. 2019, 357, 167–184. [Google Scholar] [CrossRef]
- Wu, D.; Liu, Y.; Tang, M.; Xu, X.K.; Guan, S. Impact of hopping characteristics of inter-layer commuters on epidemic spreading in multilayer networks. Chaos Solitons Fractals 2022, 159, 112100. [Google Scholar] [CrossRef]
- Wang, J.; Cai, S.M.; Zhou, T. Immunization of Cooperative Spreading Dynamics on Complex Networks. Complexity 2021, 2021, 6645113. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, Q.; Pan, L.; Tang, M. Identify Influential Spreaders in Asymmetrically Interacting Multiplex Networks. IEEE Trans. Netw. Sci. Eng. 2023, 10, 1–12. [Google Scholar] [CrossRef]
- Saggu, A.; Sinha, A. Social Influence Analysis for Information Diffusion in Complex Commercial Network. Int. J. Knowl. Syst. Sci. 2020, 11, 22–59. [Google Scholar] [CrossRef]
- de Arruda, G.F.; Petri, G.; Rodrigues, F.A.; Moreno, Y. Impact of the distribution of recovery rates on disease spreading in complex networks. Phys. Rev. Res. 2020, 2, 013046. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Yuan, Z.; Li, X. Epidemic Threshold in Temporal Multiplex Networks With Individual Layer Preference. IEEE Trans. Netw. Sci. Eng. 2021, 8, 814–824. [Google Scholar] [CrossRef]
- Granell, C.; Gómez, S.; Arenas, A. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks. Phys. Rev. Lett. 2013, 111, 128701. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Xin, J.; Lei, Y.; Meng, L.; Zheng, Z. Two-stage effects of awareness cascade on epidemic spreading in multiplex networks. Phys. Rev. E 2015, 91, 012822. [Google Scholar] [CrossRef] [Green Version]
- Xiao, H.A.; Yh, A.; Gtbc, D.; Bing, W.A. Co-evolution dynamics of epidemic and information under dynamical multi-source information and behavioral responses. Knowl.-Based Syst. 2022, 252, 109413. [Google Scholar]
- Liu, C.; Yang, Y.; Chen, B.; Cui, T.; Shang, F.; Fan, J.; Li, R. Revealing spatiotemporal interaction patterns behind complex cities. Chaos Interdiscip. J. Nonlinear Sci. 2022, 32, 081105. [Google Scholar] [CrossRef]
- Li, R.; Tang, M.; Hui, P. Epidemic spreading on multi-relational networks. Acta Phys. Sin. 2013, 62, 168903. [Google Scholar]
- Shang, F.; Chen, B.; Expert, P.; Lü, L.; Yang, A.; Stanley, H.E.; Lambiotte, R.; Evans, T.S.; Li, R. Local dominance unveils clusters in networks. arXiv 2022, arXiv:2209.15497. [Google Scholar]
- Granell, C.; Gómez, S.; Arenas, A. Competing spreading processes on multiplex networks: Awareness and epidemics. Phys. Rev. E 2014, 90, 012808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Zhang, P.; Zhao, X.; Xue, L. The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks. Phys. A Stat. Mech. Its Appl. 2022, 588, 126558. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Co-evolution spreading of multiple information and epidemics on two-layered networks under the influence of mass media. Nonlinear Dyn. 2020, 102, 3039–3052. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xian, J.; Zhang, Z.; Li, Z.; Yang, D. Coupled Information–Epidemic Spreading Dynamics with Selective Mass Media. Entropy 2023, 25, 927. https://doi.org/10.3390/e25060927
Xian J, Zhang Z, Li Z, Yang D. Coupled Information–Epidemic Spreading Dynamics with Selective Mass Media. Entropy. 2023; 25(6):927. https://doi.org/10.3390/e25060927
Chicago/Turabian StyleXian, Jiajun, Zhihong Zhang, Zongyi Li, and Dan Yang. 2023. "Coupled Information–Epidemic Spreading Dynamics with Selective Mass Media" Entropy 25, no. 6: 927. https://doi.org/10.3390/e25060927
APA StyleXian, J., Zhang, Z., Li, Z., & Yang, D. (2023). Coupled Information–Epidemic Spreading Dynamics with Selective Mass Media. Entropy, 25(6), 927. https://doi.org/10.3390/e25060927