Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel
Abstract
:1. Introduction
1.1. Lattice Boltzmann Model
1.2. Squirmer Model
1.3. Boundary Conditions
1.4. Repulsive Force Model
2. Flow and Parameters
3. Validation
4. Results and Discussion
4.1. Swimming Mode
4.2. Reasons for Different Modes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schuster, S.C.; Khan, S. The bacterial flagellar motor. Annu. Rev. Biophys. Biomol. Struct. 1994, 23, 509–539. [Google Scholar] [CrossRef]
- Brennen, C.; Winet, H. Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 1977, 9, 339–398. [Google Scholar] [CrossRef] [Green Version]
- Ajdari, A.; Stone, H.A. A note on swimming using internally generated traveling waves. Phys. Fluids 1999, 11, 1275–1277. [Google Scholar] [CrossRef]
- Paxton, W.F.; Kistler, K.C.; Olmeda, C.C.; Sen, A.; Angelo, S.K.S.; Cao, Y.; Mallouk, T.E.; Lammert, A.P.E.; Crespi, V.H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431. [Google Scholar] [CrossRef] [PubMed]
- Lauga, E.; Powers, T.R. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 2009, 72, 096601. [Google Scholar] [CrossRef]
- Lighthill, M.J. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 1952, 5, 109–118. [Google Scholar] [CrossRef]
- Blake, J.R. A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 1971, 46, 199–208. [Google Scholar] [CrossRef]
- Chwang, A.T.; Wu, T.Y.T. Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 1975, 67, 787–815. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, N.G.; Legendre, D.; Lauga, E. A squirmer across Reynolds numbers. J. Fluid Mech. 2016, 796, 233–256. [Google Scholar] [CrossRef] [Green Version]
- Rühle, F.; Blaschke, J.; Kuhr, J.T. Gravity-induced dynamics of a squirmer microswimmer in wall proximity. New J. Phys. 2018, 20, 025003. [Google Scholar] [CrossRef]
- Li, G.; Ostace, A.; Ardekani, A.M. Hydrodynamic interaction of swimming organisms in an inertial regime. Phys. Rev. E 2016, 94, 053104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadda, F.; Molina, J.J.; Yamamoto, R. Dynamics of a chiral swimmer sedimenting on a flat plate. Phys. Rev. E 2020, 101, 052608. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Lin, J.Z. Behaviors of a settling microswimmer in a narrow vertical channel. Powder Technol. 2022, 398, 117042. [Google Scholar] [CrossRef]
- Ishimoto, K.; Gaffney, E.A. Squirmer dynamics near a boundary. Phys. Rev. E 2013, 88, 062702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drescher, K.; Leptos, K.C.; Tuval, I. Dancing volvox: Hydrodynamic bound states of swimming algae. Phys. Rev. Lett. 2009, 102, 168101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, T.; Hota, M. Interaction of two swimming Paramecia. J. Exp. Biol. 2006, 209, 4452–4463. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yang, X.; Yang, M. Dynamic clustering in suspension of motile bacteria. Europhys. Lett. 2015, 111, 54002. [Google Scholar] [CrossRef] [Green Version]
- Petroff, A.P.; Wu, X.L.; Libchaber, A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 2015, 114, 158102. [Google Scholar] [CrossRef]
- Saintillan, D.; Shelley, M.J. Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 2007, 99, 058102. [Google Scholar] [CrossRef]
- Lushi, E.; Wioland, H.; Goldstein, R.E. Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc. Natl. Acad. Sci. USA 2014, 111, 9733–9738. [Google Scholar] [CrossRef]
- Papavassiliou, D.; Alexander, G.P. Exact solutions for hydrodynamic interactions of two squirming spheres. J. Fluid Mech. 2017, 813, 618–646. [Google Scholar] [CrossRef] [Green Version]
- More, R.V.; Ardekani, A.M. Hydrodynamic interactions between swimming microorganisms in a linearly density stratified fluid. Phys. Rev. E 2021, 103, 013109. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.T.; Lin, J.Z.; Ouyang, Z. Hydrodynamic behavior of self-propelled particles in a simple shear flow. Entropy 2022, 24, 854. [Google Scholar] [CrossRef]
- Guasto, J.S.; Rusconi, R.; Stocker, R. Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 2012, 44, 373–400. [Google Scholar] [CrossRef] [Green Version]
- Ouillon, R.; Houghton, I.A.; Dabiri, J.O. Active swimmers interacting with stratified fluids during collective vertical migration. J. Fluid Mech. 2020, 902, A23. [Google Scholar] [CrossRef]
- Hill, N.A.; Pedley, T.J. Bioconvection. Fluid Dyn. Res. 2005, 37, 1. [Google Scholar] [CrossRef]
- Pedley, T.J.; Kessler, J.O. Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 1992, 24, 313–358. [Google Scholar] [CrossRef]
- Fenchel, T.O.M.; Finlay, B.J. Photobehavior of the Ciliated Protozoon Loxodes: Taxic, Transient, and Kinetic Responses in the Presence and Absence of Oxygen 1. J. Protozool. 1986, 33, 139–145. [Google Scholar] [CrossRef]
- Ntefidou, M.; Iseki, M.; Watanabe, M. Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis. Plant Physiol. 2003, 133, 1517–1521. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.H.; D’Humières, D.; Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 1992, 17, 479–484. [Google Scholar] [CrossRef]
- Benzi, R.; Succi, S.; Vergassola, M.R. The lattice Boltzmann equation: Theory and applications. Phys. Rep. 1992, 222, 145–197. [Google Scholar] [CrossRef]
- Chen, S.Y.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Lallemand, P.; Luo, L.S. Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 2003, 184, 406–421. [Google Scholar] [CrossRef]
- Mei, R.; Yu, D.; Shyy, W. Force evaluation in the lattice Boltzmann method involving curved geometry. Phys. Rev. E 2002, 65, 041203. [Google Scholar] [CrossRef] [Green Version]
- Aidun, C.K.; Lu, Y.; Ding, E.J. Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 1998, 373, 287–311. [Google Scholar] [CrossRef]
- Glowinski, R.; Pan, T.; Hesla, T.I. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. J. Comput. Phys. 2001, 169, 363–426. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.G.; Michaelides, E.E. The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J. Comput. Phys. 2004, 195, 602–628. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, G.; Lin, J.; Nie, D. Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel. Entropy 2022, 24, 1564. https://doi.org/10.3390/e24111564
Guan G, Lin J, Nie D. Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel. Entropy. 2022; 24(11):1564. https://doi.org/10.3390/e24111564
Chicago/Turabian StyleGuan, Geng, Jianzhong Lin, and Deming Nie. 2022. "Swimming Mode of Two Interacting Squirmers under Gravity in a Narrow Vertical Channel" Entropy 24, no. 11: 1564. https://doi.org/10.3390/e24111564