Sensor Data Analytics: Challenges and Methods for Data-Intensive Applications
Funding
Conflicts of Interest
References
- Perros, H. An Introduction to IoT Analytics; Chapman & Hall/CRC Data Science Series; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Anderson, C. Creating a Data-Driven Organization; O’Reilly Media Inc.: Sebastopol, CA, USA, 2015. [Google Scholar]
- Provost, F.; Fawcett, T. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking; O’Reilly Media Inc.: Sebastopol, CA, USA, 2013. [Google Scholar]
- Wirth, R.; Hipp, J. CRISP-DM: Towards a Standard Process Model for Data Mining. In Proceedings of the 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, Manchester, UK, 11–13 April 2000; Volume 1, pp. 29–40. [Google Scholar]
- Hey, A.J.; Tansley, S.; Tolle, K.M. The Fourth Paradigm: Data-Intensive Scientific Discovery; Microsoft Research Redmond: Redmond, WA, USA, 2009; Volume 1. [Google Scholar]
- Kelleher, J.D.; Tierney, B. Data Science; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Bifet, A.; Gavalda, R.; Holmes, G.; Pfahringer, B. Machine Learning for Data Streams: With Practical Examples in MOA; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms and Applications; Pearson: London, UK, 2006. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- MacKay, D.J. Information Theory, Inference and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Rodrigues, M.R.D.; Eldar, Y.C. (Eds.) Information-Theoretic Methods in Data Science; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Gajowniczek, K.; Bator, M.; Ząbkowski, T. Whole Time Series Data Streams Clustering: Dynamic Profiling of the Electricity Consumption. Entropy 2020, 22, 1414. [Google Scholar] [CrossRef] [PubMed]
- Reyes Leiva, K.M.; Jaén-Vargas, M.; Cuba, M.Á.; Sánchez Lara, S.; Serrano Olmedo, J.J. A Proposal of a Motion Measurement System to Support Visually Impaired People in Rehabilitation Using Low-Cost Inertial Sensors. Entropy 2021, 23, 848. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; He, J.; Ren, K.; Lungu, J.; Hou, Y.; Dong, R. An Information Gain-Based Model and an Attention-Based RNN for Wearable Human Activity Recognition. Entropy 2021, 23, 1635. [Google Scholar] [CrossRef] [PubMed]
- Aznar-Gimeno, R.; Labata-Lezaun, G.; Adell-Lamora, A.; Abadía-Gallego, D.; del Hoyo-Alonso, R.; González-Muñoz, C. Deep Learning for Walking Behaviour Detection in Elderly People Using Smart Footwear. Entropy 2021, 23, 777. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, C.; Gomez, J.; Moguerza, J.M.; Castillo, J.; Martinez, J.I. Toward Accelerated Training of Parallel Support Vector Machines Based on Voronoi Diagrams. Entropy 2021, 23, 1605. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Chen, J.; Tan, W.; Yan, Q.; Cai, C. Optimal 3D Angle of Arrival Sensor Placement with Gaussian Priors. Entropy 2021, 23, 1379. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Bi, J.; Guillen, M.; Pérez-Marín, A.M. Driving Risk Assessment Using Near-Miss Events Based on Panel Poisson Regression and Panel Negative Binomial Regression. Entropy 2021, 23, 829. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Escaño, J.; Castán, B.; Castán, S.; Chóliz-Ezquerro, M.; Asensio, C.; Laliena, A.R.; Sanz-Enguita, G.; Sanz, G.; Esteban, L.M.; Savirón, R. Machine Learning Algorithm to Predict Acidemia Using Electronic Fetal Monitoring Recording Parameters. Entropy 2022, 24, 68. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, J.; Yubero, R.; Visitación, B.; Navarro-García, J.; Algar, M.J.; Cano, E.L.; Ortega, F. Analysis of Accelerometer and GPS Data for Cattle Behaviour Identification and Anomalous Events Detection. Entropy 2022, 24, 336. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega, F.; Cano, E.L. Sensor Data Analytics: Challenges and Methods for Data-Intensive Applications. Entropy 2022, 24, 850. https://doi.org/10.3390/e24070850
Ortega F, Cano EL. Sensor Data Analytics: Challenges and Methods for Data-Intensive Applications. Entropy. 2022; 24(7):850. https://doi.org/10.3390/e24070850
Chicago/Turabian StyleOrtega, Felipe, and Emilio L. Cano. 2022. "Sensor Data Analytics: Challenges and Methods for Data-Intensive Applications" Entropy 24, no. 7: 850. https://doi.org/10.3390/e24070850