Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid
Abstract
:1. Introduction
2. Cycle Model
3. Power Output and Thermal Efficiency
4. Discussions
5. Numerical Examples
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Nomenclature
heat rate released by fuel | |
constant related to heat transfer | |
specific heat | |
mole number of WF | |
power output | |
heat added or rejected by the working fluid | |
compression ratio | |
temperature | |
volume | |
Greek symbol | |
SHR | |
efficiency | |
compression efficiency | |
expansion efficiency | |
Subscripts | |
Atkinson cycle | |
Brayton cycle | |
Constant SHR | |
Diesel cycle | |
Dual cycle | |
Variable SHR with the LF of temperature | |
Miller cycle | |
Variable SHR with NLF of temperature | |
Otto cycle |
Abbreviations
AS | air standard |
CR | compression ratio |
FL | friction loss |
FTT | finite time thermodynamics |
HTL | heat transfer loss |
IIL | internal irreversibility loss |
LF | linear function |
MPO | maximum power output |
NLF | nonlinear function |
PAE | power output and efficiency |
PC | performance characteristics |
RHEC | reciprocating heat-engine cycle |
SH | specific heat |
SHR | specific heat ratio |
WF | working fluid |
References
- Andresen, B. Finite-Time Thermodynamics; University of Copenhagen Physics Laboratory II: Copenhagen, Denmark, 1983. [Google Scholar]
- Hoffmann, K.H.; Burzler, J.M.; Schubert, S. Endoreversible thermodynamics. J. Non Equilib. Thermodyn. 1997, 22, 311–355. [Google Scholar]
- Chen, L.G.; Wu, C.; Sun, F.R. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J. Non Equilib. Thermodyn. 1999, 24, 327–359. [Google Scholar] [CrossRef]
- Hoffman, K.H.; Burzler, J.; Fischer, A.; Schaller, M.; Schubert, S. Optimal process paths for endoreversible systems. J. Non Equilib. Thermodyn. 2003, 28, 233–268. [Google Scholar] [CrossRef]
- Andresen, B. Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 2011, 50, 2690–2704. [Google Scholar] [CrossRef] [PubMed]
- Feidt, M. Optimum thermodynamics-New upperbounds. Entropy 2009, 11, 529–547. [Google Scholar] [CrossRef]
- Vaudrey, A.V.; Lanzetta, F.; Feidt, M.H.B. Reitlinger and the origins of the efficiency at maximum power formula for heat engines. J. Non Equilib. Thermodyn. 2014, 39, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M. The history and perspectives of efficiency at maximum power of the Carnot engine. Entropy 2017, 19, 369. [Google Scholar] [CrossRef]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 1. Fundamental; ISTE Press: London, UK; Elsevier: London, UK, 2017. [Google Scholar]
- Feidt, M. Finite Physical Dimensions Optimal Thermodynamics 2. Complex Systems; ISTE Press: London, UK; Elsevier: London, UK, 2018. [Google Scholar]
- Chen, L.G.; Xia, S.J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes; Science Press: Beijing, China, 2017. [Google Scholar]
- Chen, L.G.; Xia, S.J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles—Thermodynamic and Chemical Theoretical Cycles; Science Press: Beijing, China, 2018. [Google Scholar]
- Chen, L.G.; Xia, S.J. Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles –Engineering Thermodynamic Plants and Generalized Engine Cycles; Science Press: Beijing, China, 2018. [Google Scholar]
- Chen, L.G.; Xia, S.J. Progresses in generalized thermodynamic dynamic-optimization of irreversible processes. Sci. Sin. Technol. 2019, 49, 981–1022. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Xia, S.J.; Feng, H.J. Progress in generalized thermodynamic dynamic-optimization of irreversible cycles. Sci. Sin. Technol. 2019, 49, 1223–1267. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Li, J. Thermodynamic Optimization Theory for Two-Heat-Reservoir Cycles; Science Press: Beijing, China, 2020. [Google Scholar]
- Schwalbe, K.; Hoffmann, K.H. Performance features of a stationary stochastic Novikov engine. Entropy 2018, 20, 52. [Google Scholar] [CrossRef] [Green Version]
- Schwalbe, K.; Hoffmann, K.H. Stochastic Novikov engine with time dependent temperature fluctuations. Appl. Therm. Eng. 2018, 142, 483–488. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Novikov engine with fluctuating heat bath temperature. J. Non Equilib. Thermodyn. 2018, 43, 141–150. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Stochastic Novikov engine with Fourier heat transport. J. Non Equilib. Thermodyn. 2019, 44, 417–424. [Google Scholar] [CrossRef]
- Feidt, M.; Costea, M. Progress in Carnot and Chambadal modeling of thermomechnical engine by considering entropy and heat transfer entropy. Entropy 2019, 21, 1232. [Google Scholar] [CrossRef] [Green Version]
- Feidt, M.; Costea, M.; Petrescu, S.; Stanciu, C. Nonlinear thermodynamic analysis and optimization of a Carnot engine cycle. Entropy 2016, 18, 243. [Google Scholar] [CrossRef] [Green Version]
- Páez-Hernández, R.T.; Chimal-Eguía, J.C.; Ladino-Luna, D.; Velázquez-Arcos, J.M. Comparative performance analysis of a simplified Curzon-Ahlborn engine. Entropy 2018, 20, 637. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ayala, J.; Santillán, M.; Santos, M.J.; Calvo-Hernández, A.; Roco, J.M.M. Optimization and stability of heat engines: The role of entropy evolution. Entropy 2018, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Barranco-Jimenez, M.A.; Sanchez-Salas, N.; Angulo-Brown, F. Finite time thermoeconomicc optimization of a solar-driven heat engine model. Entropy 2011, 13, 171–183. [Google Scholar] [CrossRef]
- Schwalbe, K.; Hoffmann, K.H. Optimal control of an endoreversible solar power plant. J. Non Equilib. Thermodyn. 2018, 43, 255–271. [Google Scholar] [CrossRef]
- Zhu, F.L.; Chen, L.G.; Wang, W.H. Thermodynamic analysis of an irreversible Maisotsenko reciprocating Brayton cycle. Entropy 2018, 20, 167. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.L.; Chen, L.G.; Wang, W.H. Thermodynamic analysis and optimization of irreversible Maisotsenko-Diesel cycle. J. Therm. Sci. 2019, 28, 659–668. [Google Scholar] [CrossRef]
- Shen, J.F.; Chen, L.G.; Ge, Y.L.; Zhu, F.L.; Wu, Z.X. Optimum ecological performance of irreversible reciprocating Maisotsenko-Brayton cycle. Euro. Phys. J. Plus 2019, 134, 293. [Google Scholar] [CrossRef]
- Fontaine, K.; Yasunaga, T.; Ikegami, Y. OTEC maximum net power output using Carnot cycle and application to simplify heat exchanger selection. Entropy 2019, 21, 1143. [Google Scholar] [CrossRef] [Green Version]
- Yasunaga, T.; Ikegami, Y. Finite-time thermodynamic model for evaluating heat engines in ocean thermal energy conversion. Entropy 2020, 22, 211. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.X.; Feng, H.J.; Chen, L.G.; Tang, W.; Shi, J.Z.; Ge, Y.L. Constructal thermodynamic optimization for ocean thermal energy conversion system with dual-pressure organic Rankine cycle. Energy Convers. Manag. 2020, 210, 112727. [Google Scholar] [CrossRef]
- Feng, H.J.; Qin, W.X.; Chen, L.G.; Cai, C.G.; Ge, Y.L.; Xia, S.J. Power output, thermal efficiency and exergy-based ecological performance optimizations of an irreversible KCS-34 coupled to variable temperature heat reservoirs. Energy Convers. Manag. 2020, 205, 112424. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, F.K.; Sun, F.R. Thermodynamic analyses and optimizations for thermoelectric devices: The state of the arts. Sci. China Technol. Sci. 2016, 59, 442–455. [Google Scholar] [CrossRef]
- Feng, Y.L.; Chen, L.G.; Meng, F.K.; Sun, F.R. Influences of Thomson effect on performance of thermoelectric generator-driven thermoelectric heat pump combined device. Entropy 2018, 20, 29. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.L.; Chen, L.G.; Meng, F.K.; Sun, F.R. Influences of external heat transfer and Thomson effect on performance of TEG-TEC combined thermoelectric device. Sci. China Technol. Sci. 2018, 61, 1600–1610. [Google Scholar] [CrossRef]
- Feng, Y.L.; Chen, L.G.; Meng, F.K.; Sun, F.R. Thermodynamic analysis of TEG-TEC device including influence of Thomson effect. J. Non Equilib. Thermodyn. 2018, 43, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Pourkiaei, S.M.; Ahmadi, M.H.; Sadeghzadeh, M.; Moosavi, S.; Pourfayaz, F.; Chen, L.G.; Yazdi, M.A.; Kumar, R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy 2019, 186, 115849. [Google Scholar] [CrossRef]
- Chen, L.G.; Meng, F.K.; Ge, Y.L.; Feng, H.J.; Xia, S.J. Performance optimization of a class of combined thermoelectric heating devices. Sci. China Technol. Sci. 2020, 63. [Google Scholar] [CrossRef]
- Masser, R.; Hoffmann, K.H. Dissipative endoreversible engine with given efficiency. Entropy 2019, 21, 1117. [Google Scholar] [CrossRef] [Green Version]
- Stanciu, C.; Feidt, M.; Costea, M.; Stanciu, D. Optimization and entropy production: Application to Carnot-like refrigeration machines. Entropy 2018, 20, 953. [Google Scholar] [CrossRef] [Green Version]
- Arango-Reyes, K.; Barranco-Jiménez, M.A.; De Parga-Álvarez, G.A.; Angulo-Brown, F. A simple thermodynamic model of the internal convective zone of the earth. Entropy 2018, 20, 985. [Google Scholar] [CrossRef] [Green Version]
- Kosloff, R. Quantum thermodynamics: A dynamical viewpoit. Entropy 2013, 15, 2100–2128. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, K.H.; Salamon, P. Finite-time availability in a quantum system. EPL 2015, 109, 40004. [Google Scholar] [CrossRef] [Green Version]
- Kosloff, R.; Rezek, Y. The quantum harmonic Otto cycle. Entropy 2017, 19, 136. [Google Scholar] [CrossRef] [Green Version]
- Deffner, S. Efficiency of harmonic quantum Otto engines at maximal power. Entropy 2018, 20, 875. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Liu, X.W.; Wu, F.; Xia, S.J.; Feng, H.J. Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators. Phys. A Stat. Mech. Appl. 2020, 537, 122597. [Google Scholar] [CrossRef]
- Liu, X.W.; Chen, L.G.; Wei, S.H.; Meng, F.K. Optimal ecological performance investigation of a quantum harmonic oscillator Brayton refrigerator. Trans. ASME J. Therm. Sci. Eng. Appl. 2020, 12, 1–24. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, L.G.; Wu, F.; Ge, Y.L. Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with a 1D isotropic Heisenberg model. Phys. A Stat. Mech. Appl. 2020. [Google Scholar] [CrossRef]
- Chen, L.G.; Liu, X.W.; Wu, F.; Feng, H.J.; Xia, S.J. Power and efficiency optimization of an irreversible quantum Carnot heat engine working with harmonic oscillators. Phys. A Stat. Mech. Appl. 2020. [Google Scholar] [CrossRef]
- Chen, Y. Maximum profit configuration of commercial engines. Entropy 2011, 13, 1137–1151. [Google Scholar] [CrossRef]
- Sieniutycz, S. Complexity and Complex Thermo-Economic Systems; Elsevier: Oxford, UK, 2020. [Google Scholar]
- Zhang, L.; Chen, L.G.; Xia, S.J.; Wang, C.; Sun, F.R. Entropy generation minimization for reverse water gas shift (RWGS) reactor. Entropy 2018, 20, 415. [Google Scholar] [CrossRef] [Green Version]
- Roach, T.N.F.; Salamon, P.; Nulton, J.; Andresen, B.; Felts, B.; Haas, A.; Calhoun, S.; Robinett, N.; Rohwer, F. Application of finite-time and control thermodynamics to biological processes at multiple scales. J. Non Equilib. Thermodyn. 2018, 43, 193–210. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Zhang, L.; Xia, S.J.; Sun, F.R. Entropy generation minimization for hydrogenation of CO2 to light olefins. Energy 2018, 147, 187–196. [Google Scholar] [CrossRef]
- Chen, L.G.; Wang, C.; Xia, S.J.; Sun, F.R. Thermodynamic analysis and optimization of extraction process of CO2 from acid seawater by using hollow fiber membrane contactor. Int. J. Heat Mass Transf. 2018, 124, 1310–1320. [Google Scholar] [CrossRef]
- Chimal-Eguia, J.C.; Paez-Hernandez, R.; Ladino-Luna, D.; Velázquez-Arcos, J.M. Performance of a simple energetic-converting reaction model using linear irreversible thermodynamics. Entropy 2019, 21, 1030. [Google Scholar] [CrossRef] [Green Version]
- Li, P.L.; Chen, L.G.; Xia, S.J.; Zhang, L. Entropy generation rate minimization for in methanol synthesis via CO2 hydrogenation reactor. Entropy 2019, 21, 174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xia, S.J.; Chen, L.G.; Ge, Y.L.; Wang, C.; Feng, H.J. Entropy generation rate minimization for hydrocarbon synthesis reactor from carbon dioxide and hydrogen. Int. J. Heat Mass Transf. 2019, 137, 1112–1123. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.G.; Xia, S.J.; Ge, Y.L.; Wang, C.; Feng, H.J. Multi-objective optimization for helium-heated reverse water gas shift reactor by using NSGA-II. Int. J. Heat Mass Transf. 2020, 148, 119025. [Google Scholar] [CrossRef]
- Li, P.L.; Chen, L.G.; Xia, S.J.; Zhang, L.; Kong, R.; Ge, Y.L.; Feng, H.J. Entropy generation rate minimization for steam methane reforming reactor heated by molten salt. Energy Rep. 2020, 6, 685–697. [Google Scholar] [CrossRef]
- Zhao, J.X.; Xu, F.C. Finite-time thermodynamic modeling and a comparative performance analysis for irreversible Otto, Miller and Atkinson Cycles. Entropy 2018, 20, 75. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.X.; Chen, L.G.; Feng, H.J. Thermodynamic optimization for an endoreversible Dual-Miller cycle (DMC) with finite speed of piston. Entropy 2018, 20, 165. [Google Scholar] [CrossRef] [Green Version]
- Medina, A.; Curto-Risso, P.L.; Calvo-Hernández, A.; Guzmán-Vargas, L.; Angulo-Brown, F.; Sen, A.K. Quasi-Dimensional Simulation of Spark Ignition Engines. From Thermodynamic Optimization to Cyclic Variability; Springer: London, UK, 2014. [Google Scholar]
- Ge, Y.L.; Chen, L.G.; Sun, F.R. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy 2016, 18, 139. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.L.; Chen, L.G.; Qin, X.Y. Effect of specific heat variations on irreversible Otto cycle performance. Int. J. Heat Mass Transf. 2018, 122, 403–409. [Google Scholar] [CrossRef]
- Klein, S.A. An explanation for observed compression ratios in international combustion engines. Trans. ASME J. Eng. Gas Turbine Power 1991, 113, 511–513. [Google Scholar] [CrossRef]
- Chen, L.G.; Wu, C.; Sun, F.R. Heat transfer effects on the net work output and efficiency characteristics for an air standard Otto cycle. Energy Convers. Manag. 1998, 39, 643–648. [Google Scholar] [CrossRef]
- Chen, L.G.; Zen, F.M.; Sun, F.R.; Wu, C. Heat transfer effects on the net work output and power as function of efficiency for air standard Diesel cycle. Energy 1996, 21, 1201–1205. [Google Scholar] [CrossRef]
- Angulo-Brown, F.; Fernandez-Betanzos, J.; Diaz-Pico, C.A. Compression ratio of an optimized Otto-cycle model. Eur. J. Phys. 1994, 15, 38–42. [Google Scholar] [CrossRef]
- Rocha-Martinez, J.A.; Navarrete-Gonzalez, T.D.; Pava-Miller, C.G.; Ramirez-Rojas, A.; Angulo-Brown, F. Otto and Diesel engine models with cyclic variability. Rev. Mex. Fis. 2002, 48, 228–234. [Google Scholar]
- Qin, X.Y.; Chen, L.G.; Sun, F.R. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles. Eur. J. Phys. 2003, 24, 359–366. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R.; Wu, C. Reciprocating heat-engine cycles. Appl. Energy 2005, 81, 180–186. [Google Scholar] [CrossRef]
- Ghatak, A.; Chakraborty, S. Effect of external irreversibilities and variable thermal properties of working fluid on thermal performance of a Dual ICE cycle. Stroj. Casopsis (J. Mech. Energy) 2007, 58, 1–12. [Google Scholar]
- Chen, L.G.; Ge, Y.L.; Sun, F.R.; Wu, C. Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible Dual cycle. Energy Convers. Manag. 2006, 47, 3224–3234. [Google Scholar] [CrossRef]
- Chen, L.G.; Ge, Y.L.; Sun, F.R.; Wu, C. The performance of a Miller cycle with heat transfer, friction and variable specific heats of working fluid. Termotehnica 2010, 14, 24–32. [Google Scholar]
- Ge, Y.L.; Chen, L.G.; Sun, F.R.; Wu, C. The effects of variable specific heats of working fluid on the performance of an irreversible Otto cycle. Int. J. Exergy 2005, 2, 274–283. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R.; Wu, C. Performance of Atkinson cycle with heat transfer, friction and variable specific heats of working fluid. Appl. Energy 2006, 83, 1210–1221. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R.; Wu, C. Performance of Diesel cycle with heat transfer, friction and variable specific heats of working fluid. J. Energy Inst. 2007, 80, 239–242. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R.; Wu, C. Performance of reciprocating Brayton cycle with heat transfer, friction and variable specific heats of working fluid. Int. J. Ambient. Energy 2008, 29, 65–75. [Google Scholar] [CrossRef]
- Chen, L.G.; Ge, Y.L.; Sun, F.R. Unified thermodynamic description and optimization for a class of irreversible reciprocating heat engine cycles. Proc. IMechE Part D J. Automob. Eng. 2008, 222, 1489–1500. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Al-Hinti, I.; Al-Aarkhi, A.; Akash, B. Thermodynamic modeling of spark-ignition engine: Effect of temperature dependent specific heats. Int. Commun. Heat Mass Transf. 2005, 33, 1264–1272. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Al-Hinti, I.; Al-Aarkhi, A.; Akash, B. Thermodynamic analysis of spark-ignition engine using a gas mixture model for the working fluid. Int. J. Energy Res. 2007, 37, 1031–1046. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Al-Hinti, I.; Al-Aarkhi, A.; Akash, B. Effect of piston friction on the performance of SI engine: A new thermodynamic approach. ASME Trans. J. Eng. Gas Turbine Power 2008, 130, 022802. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Akash, B.; Al-Hinti, I.; Al-Sarkhi, A. Performance of spark-ignition engine under the effect of friction using gas mixture model. J. Energy Inst. 2009, 82, 197–205. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R. Finite time thermodynamic modeling and analysis for an irreversible Otto cycle. Appl. Energy 2008, 85, 618–624. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R. Finite time thermodynamic modeling and analysis for an irreversible Diesel cycle. Proc. IMechE Part D J. Automob. Eng. 2008, 222, 887–894. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R. Finite time thermodynamic modeling and analysis for an irreversible Atkinson cycle. Therm. Sci. 2010, 14, 887–896. [Google Scholar] [CrossRef]
- Ge, Y.L.; Chen, L.G.; Sun, F.R. Finite time thermodynamic modeling and analysis for an irreversible Dual cycle. Comput. Math. Model. 2009, 50, 101–108. [Google Scholar] [CrossRef]
- Ebrahimi, R. Thermodynamic simulation of performance of an endoreversible Dual cycle with variable specific heat ratio of working fluid. J. Am. Sci. 2009, 5, 175–180. [Google Scholar]
- Ebrahimi, R. Effects of cut-off ratio on performance of an irreversible Dual cycle. J. Am. Sci. 2009, 5, 83–90. [Google Scholar]
- Ebrahimi, R. Performance of an endoreversible Atkinson cycle with variable specific heat ratio of working fluid. J. Am. Sci. 2010, 6, 12–17. [Google Scholar]
- Ebrahimi, R. Effects of variable specific heat ratio of working fluid on performance of an endoreversible Diesel cycle. J. Energy Inst. 2010, 83, 1–5. [Google Scholar] [CrossRef]
- Ebrahimi, R. Thermodynamic modeling of an irreversible dual cycle: Effect of mean piston speed. Rep. Opin. 2009, 1, 25–30. [Google Scholar]
- Ebrahimi, R. Performance of an irreversible Diesel cycle under variable stroke length and compression ratio. J. Am. Sci. 2009, 5, 58–64. [Google Scholar]
- Ebrahimi, R. Effects of mean piston speed, equivalence ratio and cylinder wall temperature on performance of an Atkinson engine. Math. Comput. Model. 2011, 53, 1289–1297. [Google Scholar] [CrossRef]
- Ebrahimi, R. Effects of pressure ratio on the network output and efficiency characteristics for an endoreversible Dual cycle. J. Energy Inst. 2011, 84, 30–33. [Google Scholar] [CrossRef]
- Ebrahimi, R. Performance analysis of a dual cycle engine with considerations of pressure ratio and cut-off ratio. Acta Phys. Polon. A 2010, 118, 534–539. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ge, Y.; Liu, C.; Feng, H.; Lorenzini, G. Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid. Entropy 2020, 22, 397. https://doi.org/10.3390/e22040397
Chen L, Ge Y, Liu C, Feng H, Lorenzini G. Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid. Entropy. 2020; 22(4):397. https://doi.org/10.3390/e22040397
Chicago/Turabian StyleChen, Lingen, Yanlin Ge, Chang Liu, Huijun Feng, and Giulio Lorenzini. 2020. "Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid" Entropy 22, no. 4: 397. https://doi.org/10.3390/e22040397
APA StyleChen, L., Ge, Y., Liu, C., Feng, H., & Lorenzini, G. (2020). Performance of Universal Reciprocating Heat-Engine Cycle with Variable Specific Heats Ratio of Working Fluid. Entropy, 22(4), 397. https://doi.org/10.3390/e22040397