Monitoring Autonomic and Central Nervous System Activity by Permutation Entropy during Short Sojourn in Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Concept
2.2. Subjects
2.3. Data Collection
2.4. Data Analysis of HRV
2.5. Data Analysis of EEG
2.6. Performance Analysis in the Cognitive Test
2.7. Statistical Analysis
3. Results
3.1. Performance in the Space Quantity Perception Test
3.2. Results of the HRV Analysis
3.3. Results of the EEG Analysis
3.3.1. Power Spectrum Analysis of EEG
3.3.2. PE Analysis of Raw EEG
3.3.3. PE Analysis of EEG Frequency Bands
4. Discussion
4.1. Evaluation of the HRV Dynamics
4.2. Evaluation of the EEG Dynamics
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baevskii, R.M.; Chernikova, A.G. Assessment of adaptation risk in an individual prenosological monitoring system. Neurosci. Behav. Physiol. 2016, 46, 437–445. [Google Scholar] [CrossRef]
- Lohani, M.; Payne, B.R.; Strayer, D.L. A Review of Psychophysiological Measures to Assess Cognitive States in Real-World Driving. Front. Hum. Neurosci. 2019, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Kemp, H.A.; Koenig, J.; Thayer, J.F. From psychological moments to mortality: A multidisciplinary synthesis on heart rate variability spanning the continuum of time. Neurosci. Biobehav. Rev. 2017, 83, 547–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora-Sanchez, A.; Dreyfus, G.; Vialatte, F.-B. Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach. Cogn. Neurodyn. 2019, 13, 437–452. [Google Scholar] [CrossRef]
- Eckberg, D.L. Sympathovagal balance: A critical appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Klimesch, W.; Fellinger, R.; Freunberger, R. Alpha Oscillations and Early Stages of Visual Encoding. Front. Psychol. 2011, 2, 118. [Google Scholar] [CrossRef] [Green Version]
- Debnath, R.; Salo, V.C.; Buzzell, G.A.; Yoo, K.H.; Fox, N.A. Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis. NeuroImage 2019, 184, 496–507. [Google Scholar] [CrossRef]
- Lee, D.Y.; Choi, Y.S. Multiscale Distribution Entropy Analysis of Short-Term Heart Rate Variability. Entropy 2018, 20, 952. [Google Scholar] [CrossRef]
- Castiglioni, P.; Parati, G.; Faini, A. Information-Domain Analysis of Cardiovascular Complexity: Night and Day Modulations of Entropy and the Effects of Hypertension. Entropy 2019, 21, 550. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Lipponen, J.A.; Kuoppa, P. Analysis and Preprocessing of HRV—Kubios HRV Software; ECG time-series Variability Analysis; CRC Press: Boca Raton, FL, USA, 2017; pp. 159–186. [Google Scholar]
- Stam, C.J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol. 2005, 116, 2266–2301. [Google Scholar] [CrossRef] [PubMed]
- Subha, D.P.; Joseph, P.K.; Acharya, R.; Lim, C.M. EEG signal analysis: A survey. J. Med. Syst. 2010, 34, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Aboalayon, K.; Faezipour, M.; Almuhammadi, W.; Moslehpour, S. Sleep stage classification using EEG signal analysis: A comprehensive survey and new investigation. Entropy 2016, 18, 272. [Google Scholar] [CrossRef]
- Parlitz, U.; Berg, S.; Luther, S.; Schirdewan, A.; Kurths, J.; Wessel, N. Classifying cardiac biosignals using ordinal pattern statistics and symbolic dynamics. Comput. Biol. Med. 2012, 42, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Zanin, M.; Zunino, L.; Rosso, O.A.; Papo, D. Permutation entropy and it’s main biomedical and econophysics applications: A review. Entropy 2012, 14, 1553–1577. [Google Scholar] [CrossRef]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time-series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Zunino, L.; Olivares, F.; Rosso, O.A. Permutation min-entropy: An improved quantifier for unveiling subtle temporal correlations. EPL Europhys. Lett. 2015, 109, 10005. [Google Scholar] [CrossRef]
- Traversaro, F.; Ciarrocchi, N.; Cattaneo, F.P.; Redelico, F. Comparing different approaches to compute Permutation Entropy with coarse time-series. Phys. A Stat. Mech. Appl. 2019, 513, 635–643. [Google Scholar] [CrossRef]
- Azami, H.; Escudero, J. Improved multiscale permutation entropy for biomedical signal analysis: Interpretation and application to electroencephalogram recordings. Biomed. Signal Process. Control 2016, 23, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Tung, W.W.; Gao, J.B.; Protopopescu, V.A.; Hively, L.M. Detecting dynamical changes in time-series using the permutation entropy. Phys. Rev. E 2004, 70, 046217. [Google Scholar] [CrossRef]
- Aktas, S.; Mirasoglu, B.; Yumbul, A.S.; Cotuk, H.B. Medical Consultancy of the First Turkish Antarctic Research Expedition. J. IST Fac. Med. 2016, 79, 153–156. [Google Scholar]
- Mueller, S.T.; Piper, B.J. The psychology experiment building language (PEBL) and PEBL test battery. J. Neurosci. Methods 2014, 222, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Sufani, C.; De Blasio, F.M.; McDonald, S.; Rushby, J.A. Validating the Use of Emotiv EPOC in Resting EEG Coherence Research. In Proceedings of the 25th Annual Conference of the Australasian Society for Psychophysiology, Sydney, Australia, 2–4 December 2015; Volume 13. [Google Scholar]
- Weippert, M.; Kumar, M.; Kreuzfeld, S.; Arndt, D.; Rieger, A.; Stoll, R. Comparison of three mobile devices for measuring R–R intervals and heart rate variability: Polar S810i, Suunto t6 and an ambulatory ECG system. Eur. J. Appl. Physiol. 2010, 109, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Seco, G.B.S.; Gerhardt, G.J.L.; Biazotti, A.A.; Molan, A.L.; Schönwald, S.V.; Rybarczyk-Filho, J.L. EEG alpha rhythm detection on a portable device. Biomed. Signal Process. Control 2019, 52, 97–102. [Google Scholar] [CrossRef]
- Chen, A.C.N.; Feng, W.; Zhao, H.; Yin, Y.; Wang, P. EEG default mode network in the human brain: Spectral regional field powers. Neuroimage 2008, 41, 561–574. [Google Scholar] [CrossRef] [PubMed]
- Wan, L.; Huang, H.; Schwab, N.; Tanner, J.; Rajan, A.; Lam, N.B.; Zaborszky, L.; Li, C.R.; Price, C.C.; Ding, M. From eyes-closed to eyes-open: Role of cholinergic projections in EC-to-EO alpha reactivity revealed by combining EEG and MRI. Hum. Brain Mapp. 2019, 40, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Berntson, G.G.; Thomas Bigger, J., Jr.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Amigo, J.M.; Zambrano, S.; Sanjuan, M.A. Combinatorial detection of determinism in noisy time-series. EPL Europhysics Lett. 2008, 83, 60005. [Google Scholar] [CrossRef]
- Naranjo, C.C.; Sanchez-Rodriguez, L.M.; Martinez, M.B.; Báez, M.E.; Garcia, A.M. Permutation entropy analysis of heart rate variability for the assessment of cardiovascular autonomic neuropathy in type 1 diabetes mellitus. Comput. Biol. Med. 2017, 86, 90–97. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, L.; Zunino, L.; Shi, H.; Zhuang, Y.; Liu, C. Application of permutation entropy and permutation min-entropy in multiple emotional states analysis of RRI time-series. Entropy 2018, 20, 148. [Google Scholar] [CrossRef]
- Riedl, M.; Müller, A.; Wessel, N. Practical considerations of permutation entropy. Eur. Phys. Spec. Top. 2013, 222, 249–262. [Google Scholar] [CrossRef]
- Farrace, S.; Ferrara, M.; DeAngelisa, C.; Trezzaa, R.; Cennid, P.; Perib, A.; Casagrandec, M.; De Gennaroc, L. Reduced sympathetic outflow and adrenal secretory activity during a 40-day stay in the Antarctic. Int. J. Psychophysiol. 2003, 49, 17–27. [Google Scholar] [CrossRef]
- Harinath, K.; Malhotra, A.S.; Pal, K.; Prasad, R.; Kumar, R.; Sawhney, R.C. Autonomic nervous system and adrenal response to cold in man at Antarctica. Wilderness Environ. Med. 2005, 16, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.; Van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef]
- Wenxiang, L.; Li, W.; Simin, L. A New Method Detecting Abrupt Change Base on Moving Cut Data-Permutation Entropy. Am. J. Appl. Math. 2018, 6, 62–70. [Google Scholar] [CrossRef]
- Heathers, J.A.J. Everything Hertz: Methodological issues in short-term frequency-domain HRV. Front. Physiol. 2014, 5, 177. [Google Scholar] [CrossRef]
- Duschek, S.; Muckenthaler, M.; Werner, N.; Del Paso, G.A.R. Relationships between features of autonomic cardiovascular control and cognitive performance. Biol. Psychol. 2009, 81, 110–117. [Google Scholar] [CrossRef]
- Luque-Casado, A.; Perales, J.C.; Cardenas, D.; Sanabria, D. Heart rate variability and cognitive processing: The autonomic response to task demands. Biol. Psychol. 2016, 113, 83–90. [Google Scholar] [CrossRef]
- Schneider, F.; Martin, J.; Hapfelmeier, A.; Jordan, D.; Schneider, G.; Schulz, C.M. The validity of linear and non-linear heart rate metrics as workload indicators of emergency physicians. PLoS ONE 2017, 12, e0188635. [Google Scholar] [CrossRef]
- Martin, J.; Schneider, F.; Kowalewskij, A.; Jordan, D.; Hapfelmeier, A.; Kochs, E.F.; Schulz, C.M. Linear and non-linear heart rate metrics for the assessment of anaesthetists’ workload during general anaesthesia. BJA Br. J. Anaesth. 2016, 117, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Graff, B.; Graff, G.; Makowiec, D.; Kaczkowska, A.; Wejer, D.; Budrejko, S.; Kozlowski, D.; Narkiewicz, K. Entropy measures in the assessment of heart rate variability in patients with cardiodepressive vasovagal syncope. Entropy 2015, 17, 1007–1022. [Google Scholar] [CrossRef]
- Zhang, W.C.; Wu, W.; Yu, Y.Z. Analyses on the physio-psychological state of the expeditioners in Antarctica. Antarct. Res. 1995, 6, 72–75. [Google Scholar]
- Abeln, V.; MacDonald-Nethercott, E.; Piacentini, M.F.; Meeusen, R.; Kleinert, J.; Strueder, H.K.; Schneider, S. Exercise in isolation- a countermeasure for electrocortical, mental and cognitive impairments. PLoS ONE 2015, 10, e0126356. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Hu, B.; Zheng, F.; Fan, D.; Zhao, W.; Chen, X.; Yang, Y.; Cai, Q. A method of identifying chronic stress by EEG. Pers. Ubiquitous Comput. 2013, 17, 1341–1347. [Google Scholar] [CrossRef]
- Garcia-Martinez, B.; Martinez-Rodrigo, A.; Zangroniz, R.; Pastor, J.; Alcaraz, R. Symbolic analysis of brain dynamics detects negative stress. Entropy 2017, 19, 196. [Google Scholar] [CrossRef]
- Martinez-Rodrigo, A.; Garcia-Martinez, B.; Zunino, L.; Alcaraz, R.; Fernandez-Caballero, A. Multi-Lag Analysis of Symbolic Entropies on EEG Recordings for Distress Recognition. Front. Neuroinform. 2019, 1, 40. [Google Scholar] [CrossRef]
- Halici, M.G.; Güllü, M.; Parnikoza, I. Sagediopsis bayozturkii sp. nov. on the lichen Acarospora macrocyclos from Antarctica with a key to the known species of the genus (Ascomycota, Adelococcaceae). Polar Rec. 2017, 53, 271–275. [Google Scholar] [CrossRef]
- Sharma, G.; Daniel, R.; Chandra, S.; Singh, R. Effect of Complexity on Frontal Event Related Desynchronisation in Mental Rotation Task; Applied Psychophysiology and Biofeedback: Wheat Ridge, CO, USA, 2019; pp. 1–11. [Google Scholar]
- Mun, S.; Whang, M.; Park, S.; Park, M.C. Effects of mental workload on involuntary attention: A somatosensory ERP study. Neuropsychologia 2017, 106, 7–20. [Google Scholar] [CrossRef]
- Ambrosini, E.; Vallesi, A. Asymmetry in prefrontal resting-state EEG spectral power underlies individual differences in phasic and sustained cognitive control. Neuroimage 2016, 124, 843–857. [Google Scholar] [CrossRef]
- Fink, A.; Benedek, M. EEG alpha power and creative ideation. Neurosci. Biobehav. Rev. 2014, 44, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Liang, Z.; Li, X.; Li, D.; Li, Y.; Ursino, M. A Comparison of Multiscale Permutation Entropy Measures in On-Line Depth of Anesthesia Monitoring. PLoS ONE 2016, 11, e0164104. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, J.; Liu, X.; Ouyang, G. Using Permutation Entropy to Measure the Changes in EEG Signals During Absence Seizures. Entropy 2014, 16, 3049–3061. [Google Scholar] [CrossRef] [Green Version]
- Bandt, C. A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure. Entropy 2017, 19, 197. [Google Scholar] [CrossRef]
- Olson, J.J. Antarctica: A review of recent medical research. Trends Pharmacol. Sci. 2002, 23, 487–490. [Google Scholar] [CrossRef]
- Berger, S.; Schneider, G.; Kochs, E.; Jordan, D. Permutation Entropy: Too Complex a Measure for EEG Time Series? Entropy 2017, 19, 692. [Google Scholar] [CrossRef]
- Amigo, J.M.; Zambrano, S.; Sanjuan, M.A.F. Permutation complexity of spatiotemporal dynamics. EPL Europhys. Lett. 2010, 90, 10007. [Google Scholar] [CrossRef]
- Zhao, X.; Shang, P.; Huang, J. Permutation complexity and dependence measures of time-series. EPL Europhys. Lett. 2013, 102, 40005. [Google Scholar] [CrossRef]
- Haruna, T. Partially ordered permutation complexity of coupled time-series. Phys. D Nonlinear Phenom. 2019, 388, 40–44. [Google Scholar] [CrossRef]
- Bahraminasab, A.; Ghasemi, F.; Stefanovska, A.; McClintock, P.V.; Kantz, H. Direction of coupling from phases of interacting oscillators: A permutation information approach. Phys. Rev. Lett. 2008, 100, 084101. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Xiong, Q.; Luo, D.; Mei, G.; Zhang, T. A rolling bearing fault diagnosis strategy based on improved multiscale permutation entropy and least squares SVM. J. Mech. Sci. Technol. 2017, 31, 2711–2722. [Google Scholar] [CrossRef]
- Keller, K.; Mangold, T.; Stolz, I.; Werner, J. Permutation entropy: New ideas and challenges. Entropy 2017, 19, 134. [Google Scholar] [CrossRef]
dotN | ± | ± 4 | ± |
dotR | ± | ± | ± |
dotP | ± | ± | ± |
EO | EC | CT | EO | EC | CT | EO | EC | CT | |
Rrmean (ms) | |||||||||
RMSSD (ms) | |||||||||
pNN50 (%) | |||||||||
%HF | |||||||||
* | * | * | |||||||
* | * | * |
Voyage No | Mean | Std. Error |
---|---|---|
1 | ||
2 | ||
3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çotuk, H.B.; Duru, A.D.; Aktaş, Ş. Monitoring Autonomic and Central Nervous System Activity by Permutation Entropy during Short Sojourn in Antarctica. Entropy 2019, 21, 893. https://doi.org/10.3390/e21090893
Çotuk HB, Duru AD, Aktaş Ş. Monitoring Autonomic and Central Nervous System Activity by Permutation Entropy during Short Sojourn in Antarctica. Entropy. 2019; 21(9):893. https://doi.org/10.3390/e21090893
Chicago/Turabian StyleÇotuk, H. Birol, Adil Deniz Duru, and Şamil Aktaş. 2019. "Monitoring Autonomic and Central Nervous System Activity by Permutation Entropy during Short Sojourn in Antarctica" Entropy 21, no. 9: 893. https://doi.org/10.3390/e21090893
APA StyleÇotuk, H. B., Duru, A. D., & Aktaş, Ş. (2019). Monitoring Autonomic and Central Nervous System Activity by Permutation Entropy during Short Sojourn in Antarctica. Entropy, 21(9), 893. https://doi.org/10.3390/e21090893