Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems
Abstract
:1. Introduction
1.1. Stability of Spatially Homogeneous Equilibrium States in Thermodynamically Isolated Systems
1.2. Stability of Spatially Inhomogeneous Non-Equilibrium States in Thermodynamically Open Systems; Energy Method and Its Deficiencies
We consider the simplest, natural “energy”, formed by adding the kinetic and thermal energies of perturbations, and so define .
Though is proportional to the kinetic energy, the other quadratic integrals and cannot be called energies in any strict sense.
1.3. Stability of Spatially Inhomogeneous Non-Equilibrium States in Thermodynamically Open Systems—A Search for Novel Construction of a Physically Motivated Lyapunov Type Functional
2. Outline
3. Stability of Heat Conduction in a Rigid Body
3.1. Governing Equation
3.2. Stability of Steady Solution to the Governing Equation
4. Unconditional Asymptotic Stability of Steady Non-Equilibrium Solution—The Standard Proof
4.1. Standard Energy Method
4.2. Remarks on the Notion of Energy
4.3. Energy Method from the Perspective of Lyapunov Method
5. Unconditional Asymptotic Stability: A Proof Based on Thermodynamical Concepts
5.1. Basic Facts from Thermodynamics of Continuous Media
5.1.1. Specific Helmholtz Free Energy, Specific Entropy, Specific Internal Energy
5.1.2. Entropy Production
5.1.3. Evolution Equations for the Total Energy, Specific Internal Energy and Specific Entropy
5.1.4. Net Total Energy, Net Entropy
5.1.5. Thermodynamically Isolated System
5.2. Unconditional Asymptotic Stability of the Equilibrium Rest State in a Thermodynamically Isolated System
5.2.1. Governing Equations for the Equilibrium Rest State
5.2.2. Governing Equations for the Perturbation
5.2.3. Construction of a Physically Motivated Lyapunov Functional—An Unsuccessful Attempt
5.2.4. Construction of a Physically Motivated Lyapunov Type Functional—A Successful Attempt
The energy of the world is constant. The entropy of the world strives to a maximum.
5.2.5. Relation to the Standard Energy Method
5.3. Unconditional Asymptotic Stability of a General Steady State in a Thermodynamically Open System
5.3.1. Governing Equations for the Non-Equilibrium Steady State
5.3.2. Governing Equations for the Perturbation
5.3.3. Heuristics Concerning the Construction of a Lyapunov Functional
5.3.4. Construction of a Physically Motivated Lyapunov Functional—General Remarks
5.3.5. Construction of a Physically Motivated Lyapunov Type Functional—Heat Conduction in a Rigid Body
5.3.6. Time Derivative of the Lyapunov Type Functional
5.3.7. Relation to the Standard Energy Method
5.3.8. Weak—Strong Uniqueness Property
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Example of Stability Analysis of a Steady Non-Equilibrium State in a Thermodynamically Open System Governed by a Nonlinear Equation
Appendix A.1. Rethinking the Formula for the Lyapunov Type Functional and Its Time Derivative
Appendix A.1.1. Candidate for Lyapunov Type Functional in Terms of Specific Helmholtz Free Energy and Its Derivatives
Appendix A.1.2. Time Derivative of the Lyapunov Type Functional
Appendix A.2. Stability Analysis of Heat Conduction in a Rigid Body with a Temperature Dependent Thermal Conductivity
Appendix A.2.1. Nonlinear Heat Conduction Equation
Appendix A.2.2. Formulation of An Auxiliary Problem—Temperature Dependent Thermal Conductivity versus Temperature Dependent Specific Heat Capacity
Appendix A.2.3. Identification of Specific Helmholtz Free Energy
Appendix A.2.4. Lyapunov Type Functional for the Auxiliary Problem
Appendix A.2.5. Time Derivative of Lyapunov Type Functional for the Auxiliary Problem
Appendix A.2.6. Lyapunov Type Functional for the Original Problem
References
- Coleman, B.D. On the stability of equilibrium states of general fluids. Arch. Ration. Mech. Anal. 1970, 36, 1–32. [Google Scholar] [CrossRef]
- Gurtin, M.E. Thermodynamics and stability. Arch. Ration. Mech. Anal. 1975, 59, 63–96. [Google Scholar] [CrossRef]
- Joseph, D.D. Stability of Fluid Motions I; Springer Tracts in Natural Philosophy 27; Springer: Berlin/Heidelberg, Germany, 1976; 282p. [Google Scholar]
- Joseph, D.D. Stability of Fluid Motions II; Springer Tracts in Natural Philosophy 28; Springer: Berlin/Heidelberg, Germany, 1976; 274p. [Google Scholar]
- Straughan, B. The Energy Method, Stability, and Nonlinear Convection, 2nd ed.; Applied Mathematical Sciences 91; Springer: Berlin/Heidelberg, Germany, 2004; 447p. [Google Scholar]
- Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. 1895, 186, 123–164. [Google Scholar] [CrossRef]
- Orr, W. The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid. Proc. R. Ir. Acad. Sect. A 1907, 27, 69–138. [Google Scholar]
- Serrin, J. On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 1959, 3, 1–13. [Google Scholar] [CrossRef]
- Lin, C.C. The Theory of Hydrodynamic Stability; Cambridge University Press: Cambridge, UK, 1955. [Google Scholar]
- Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability; The International Series of Monographs on Physics; Clarendon Press: Oxford, UK, 1961; 654p. [Google Scholar]
- Yudovich, V.I. The Linearization Method in Hydrodynamical Stability Theory; Translations of Mathematical Monographs 74; American Mathematical Society: Providence, RI, USA, 1989; 170p. [Google Scholar]
- Drazin, P.G.; Reid, W.H. Hydrodynamic Stability, 2nd ed.; Cambridge Mathematical Library, Cambridge University Press: Cambridge, UK, 2004; 605p. [Google Scholar]
- Schmid, P.J.; Henningson, D.S. Stability and Transition in Shear Flows; Number 142 in Applied Mathematical Sciences; Springer: New York, NY, USA, 2001. [Google Scholar]
- Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order; Classics in Mathematics; Springer: Berlin, Germany, 2001; 517p. [Google Scholar]
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics 19; American Mathematical Society: Providence, RI, USA, 1998; 662p. [Google Scholar]
- Lyapunov, A.M. The General Problem of the Stability of Motion. Ph.D. Thesis, Moscow University, Moscow, Russia, 1892. [Google Scholar]
- La Salle, J.; Lefschetz, S. Stability by Liapunov’s Direct Method with Applications; Academic Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Henry, D. Geometric Theory of Semilinear Parabolic Equations; Lecture Notes in Mathematics 940; Springer: Berlin, Germany, 1981; 348p. [Google Scholar]
- Flavin, J.N.; Rionero, S. Qualitative Estimates for Partial Differential Equations: An Introduction; Engineering Mathematics; Taylor & Francis: Philadelphia, PA, USA, 1995. [Google Scholar]
- Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; Wiley: London, UK, 1971. [Google Scholar]
- Callen, H.B. Thermodynamics and an Introduction to Thermostatistics, revised ed.; John Wiley & Sons: Hoboken, NJ, USA, 1985. [Google Scholar]
- Müller, I. Thermodynamics; Interaction of Mechanics and Mathematics; Pitman: London, UK, 1985. [Google Scholar]
- Rajagopal, K.R.; Srinivasa, A.R. On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 460, 631–651. [Google Scholar] [CrossRef]
- Málek, J.; Průša, V. Derivation of equations for continuum mechanics and thermodynamics of fluids. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids; Giga, Y., Novotný, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–70. [Google Scholar] [CrossRef]
- Grmela, M.; Öttinger, H.C. Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 1997, 56, 6620–6632. [Google Scholar] [CrossRef]
- Öttinger, H.C.; Grmela, M. Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 1997, 56, 6633–6655. [Google Scholar] [CrossRef]
- Pavelka, M.; Klika, V.; Grmela, M. Multiscale Thermo-Dynamics; de Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Dressler, M.; Edwards, B.J.; Öttinger, H.C. Macroscopic thermodynamics of flowing polymeric liquids. Rheol. Acta 1999, 38, 117–136. [Google Scholar] [CrossRef]
- Hron, J.; Miloš, V.; Průša, V.; Souček, O.; Tůma, K. On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. Int. J. Non-Linear Mech. 2017, 95, 193–208. [Google Scholar] [CrossRef]
- Málek, J.; Průša, V.; Skřivan, T.; Süli, E. Thermodynamics of viscoelastic rate-type fluids with stress diffusion. Phys. Fluids 2018, 30, 023101. [Google Scholar] [CrossRef]
- Málek, J.; Rajagopal, K.R.; Tůma, K. Derivation of the variants of the Burgers model using a thermodynamic approach and appealing to the concept of evolving natural configurations. Fluids 2018, 3, 69. [Google Scholar] [CrossRef]
- Truesdell, C.; Noll, W. The Non-Linear Field Theories of mechanics. In Handbuch der Physik; Flüge, S., Ed.; Springer: Berlin, Germany, 1965; Volume III/3. [Google Scholar]
- Clausius, R. Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie. Annalen der Physik und Chemie 1865, 125, 353–400. [Google Scholar] [CrossRef]
- Šilhavý, M. The Mechanics and Thermodynamics of Continuous Media; Texts and Monographs in Physics; Springer: Berlin, Germany, 1997; 504p. [Google Scholar]
- Ericksen, J.L. Introduction to the Thermodynamics of Solids; Applied Mathematical Sciences 131; Springer: New York, NY, USA, 1998; 189p. [Google Scholar] [CrossRef]
- Duhem, P. Traité d’Énergetique ou Thermodynamique Générale; Gauthier-Villars: Paris, France, 1911. [Google Scholar]
- Gibbs, J.W. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 1876, 3, 108–248. [Google Scholar] [CrossRef]
- Gibbs, J.W. On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 1878, 3, 343–524. [Google Scholar] [CrossRef]
- Bruges, E.A. Available Energy and the Second Law Analysis; Butterworths: London, UK, 1959. [Google Scholar]
- Sciacovelli, A.; Verda, V.; Sciubba, E. Entropy generation analysis as a design tool—A review. Renew. Sustain. Energy Rev. 2015, 43, 1167–1181. [Google Scholar] [CrossRef]
- Gurtin, M.E. Thermodynamics and the energy criterion for stability. Arch. Ration. Mech. Anal. 1973, 52, 93–103. [Google Scholar] [CrossRef]
- Ericksen, J.L. A thermo-kinetic view of elastic stability theory. Int. J. Solids Struct. 1966, 2, 573–580. [Google Scholar] [CrossRef]
- Friedman, A. Partial Differential Equations of Parabolic Type; Prentice-Hall: Upper Saddle River, NJ, USA, 1964; 347p. [Google Scholar]
- Ladyzhenskaya, O.A.; Solonnikov, V.A.; Ural’tseva, N.N. Linear and Quasi-Linear Equations of Parabolic Type; American Mathematical Society: Providence, RI, USA, 1968. [Google Scholar]
- Lieberman, G.M. Second Order Parabolic Differential Equations; World Scientific: Singapore, 1996; 439p. [Google Scholar]
- Dafermos, C.M. The second law of thermodynamics and stability. Arch. Ration. Mech. Anal. 1979, 70, 167–179. [Google Scholar] [CrossRef]
- Feireisl, E.; Jin, B.J.; Novotný, A. Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech. 2012, 14, 717–730. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotný, A. Weak–strong uniqueness property for the full Navier–Stokes–Fourier system. Arch. Ration. Mech. Anal. 2012, 204, 683–706. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotný, A. Singular limits in thermodynamics of viscous fluids. In Advances in Mathematical Fluid Mechanics; Birkhäuser Verlag: Basel, Switzerland, 2009; p. xxxvi+382. [Google Scholar] [CrossRef]
- Dostalík, M.; Průša, V.; Tůma, K. Finite amplitude stability of internal steady flows of the Giesekus viscoelastic rate-type fluid. arXiv 2018, arXiv:1808.03111. [Google Scholar]
- Dostalík, M.; Průša, V. Thermodynamics and stability of non-equilibrium steady states in open systems—Incompressible heat conducting viscous fluid subject to a temperature gradient. arXiv 2019, arXiv:1905.09394. [Google Scholar]
- Flavin, J.N.; Rionero, S. Asymptotic and other properties of a nonlinear diffusion model. J. Math. Anal. Appl. 1998, 228, 119–140. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulíček, M.; Málek, J.; Průša, V. Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems. Entropy 2019, 21, 704. https://doi.org/10.3390/e21070704
Bulíček M, Málek J, Průša V. Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems. Entropy. 2019; 21(7):704. https://doi.org/10.3390/e21070704
Chicago/Turabian StyleBulíček, Miroslav, Josef Málek, and Vít Průša. 2019. "Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems" Entropy 21, no. 7: 704. https://doi.org/10.3390/e21070704
APA StyleBulíček, M., Málek, J., & Průša, V. (2019). Thermodynamics and Stability of Non-Equilibrium Steady States in Open Systems. Entropy, 21(7), 704. https://doi.org/10.3390/e21070704