A Fourth Order Entropy Stable Scheme for Hyperbolic Conservation Laws
Abstract
:1. Introduction
2. Numerical Method
- If , then .
- If and , then .
- If and , then the following hold:
- (a)
- If , we define
- (b)
- If , then the following hold:
- i.
- If , then
- ii.
- If , then
- is monotone in iff the point values are;
- generates an extremum in the interior of iff is an extremum value.
3. Numerical Examples
4. Conclusions
Funding
Conflicts of Interest
References
- Tadmor, E. A review of numerical methods for nonlinear partial differential equations. Bull. Am. Math. Soc. 2012, 49, 507–554. [Google Scholar] [CrossRef] [Green Version]
- Shu, C. High order WENO and DG methods for time-dependent convection-dominated PDEs. J. Comput. Phys. 2016, 316, 598–613. [Google Scholar] [CrossRef]
- Tadmor, E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 2003, 12, 451–512. [Google Scholar] [CrossRef] [Green Version]
- Tadmor, E.; Zhong, W.G. Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity. J. Hyperbolic Differ. Equ. 2006, 3, 529–559. [Google Scholar] [CrossRef]
- Ismail, F.; Roe, P.L. Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks. J. Comput. Phys. 2009, 228, 5410–5436. [Google Scholar] [CrossRef]
- Fjordholm, U.S.; Mishra, S.; Tadmor, E. Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 2011, 230, 5587–5609. [Google Scholar] [CrossRef]
- Chandrashekar, P.; Klingenberg, C. Entropy stable finite volume scheme for ideal compressible MHD on 2-D Cartesian meshes. SIAM J. Numer. Anal. 2016, 54, 1313–1340. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, J.; Ren, J. High Resolution, Entropy-Consistent Scheme Using Flux Limiter for Hyperbolic Systems of Conservation Laws. J. Sci. Comput. 2015, 64, 914–937. [Google Scholar] [CrossRef]
- Dubey, R.K.; Biswas, B. Suitable diffusion for constructing non-oscillatory entropy stable schemes. J. Comput. Phys. 2018, 372, 912–930. [Google Scholar] [CrossRef]
- Fjordholm, U.S.; Mishra, S.; Tadmor, E. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 2012, 50, 544–573. [Google Scholar] [CrossRef]
- Fjordholm, U.S.; Mishra, S.; Tadmor, E. ENO reconstruction and ENO interpolation are stable. Found. Comput. Math. 2013, 13, 139–159. [Google Scholar] [CrossRef]
- Cheng, X.; Nie, Y. A third order entropy stable scheme for hyperbolic conservation laws. J. Hyperbolic Differ. Equ. 2016, 13, 129–145. [Google Scholar] [CrossRef]
- Fjordholm, U.S.; Ray, D. A Sign Preserving WENO Reconstruction Method. J. Sci. Comput. 2016, 68, 42–63. [Google Scholar] [CrossRef]
- Biswas, B.; Dubey, R.K. Low dissipative entropy stable schemes using third order WENO and TVD reconstructions. Adv. Comput. Math. 2018, 44, 1153–1181. [Google Scholar] [CrossRef]
- Lefloch, P.G.; Mercier, J.M.; Rohde, C. Fully discrete, entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal. 2002, 40, 1968–1992. [Google Scholar] [CrossRef]
- Balaguer, A.; Conde, C. Fourth-order nonoscillatory upwind and central schemes for hyperbolic conservation laws. SIAM J. Numer. Anal. 2005, 43, 455–473. [Google Scholar] [CrossRef]
- Liu, X.D.; Osher, S. Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 1996, 33, 760–779. [Google Scholar] [CrossRef]
Method | N | Error | Order | Error | Order |
---|---|---|---|---|---|
40 | 7.8941 | 2.9838 | 6.1563 | 2.9528 | |
80 | 9.8686 | 2.9999 | 7.7371 | 2.9922 | |
ES3 | 160 | 1.2332 | 3.0004 | 9.6812 | 2.9985 |
320 | 1.5413 | 3.0002 | 1.2104 | 2.9997 | |
640 | 1.9266 | 3.0000 | 1.5131 | 2.9999 | |
40 | 7.2962 | 5.5350 | |||
80 | 4.4746 | 4.0273 | 3.4513 | 4.0034 | |
ES4 | 160 | 2.7650 | 4.0164 | 2.1523 | 4.0032 |
320 | 1.7178 | 4.0086 | 1.3430 | 4.0023 | |
640 | 1.0702 | 4.0046 | 8.3862 | 4.0013 |
Method | N | Error | Order | Error | Order |
---|---|---|---|---|---|
80 | 3.8419 | 3.7835 | |||
160 | 4.9986 | 2.9422 | 5.8676 | 2.6889 | |
ES3 | 320 | 6.7841 | 2.8813 | 8.6901 | 2.7553 |
640 | 1.0357 | 2.7115 | 1.5669 | 2.4715 | |
1280 | 1.4533 | 2.5625 | 4.9399 | 1.6654 | |
80 | 8.1572 | 1.2001 | |||
160 | 5.9041 | 3.7883 | 1.4743 | 3.0249 | |
ES4 | 320 | 4.9006 | 3.5907 | 2.7023 | 1.3202 |
640 | 1.6184 | 4.9203 | 1.4716 | 7.5207 | |
1280 | 1.0013 | 4.0146 | 8.6289 | 4.0921 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X. A Fourth Order Entropy Stable Scheme for Hyperbolic Conservation Laws. Entropy 2019, 21, 508. https://doi.org/10.3390/e21050508
Cheng X. A Fourth Order Entropy Stable Scheme for Hyperbolic Conservation Laws. Entropy. 2019; 21(5):508. https://doi.org/10.3390/e21050508
Chicago/Turabian StyleCheng, Xiaohan. 2019. "A Fourth Order Entropy Stable Scheme for Hyperbolic Conservation Laws" Entropy 21, no. 5: 508. https://doi.org/10.3390/e21050508
APA StyleCheng, X. (2019). A Fourth Order Entropy Stable Scheme for Hyperbolic Conservation Laws. Entropy, 21(5), 508. https://doi.org/10.3390/e21050508