Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise
Abstract
:1. Introduction
1.1. Motivation
1.2. State of the Art
1.3. Aim and Structure of the Article
2. Application of the Cramér-Rao Inequality
2.1. Entropic Uncertainty Principles
2.2. Guide to the Expression of Uncertainty in Measurement
2.3. Beyond the Classical CRB
2.4. CRB for Signals in White Noise
3. Position Measurements
3.1. Particle
3.2. Surface
4. Displacement, Strain and Velocity Measurements
5. Conclusions and Outlook
Funding
Conflicts of Interest
References
- Udem, T.; Holzwarth, R.; Hänsch, T.W. Optical frequency metrology. Nature 2002, 416, 233–237. [Google Scholar] [CrossRef]
- Trocha, P.; Karpov, M.; Ganin, D.; Pfeiffer, M.H.P.; Kordts, A.; Wolf, S.; Krockenberger, J.; Marin-Palomo, P.; Weimann, C.; Randel, S.; et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 2018, 359, 887–891. [Google Scholar] [CrossRef] [Green Version]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated- emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef]
- Hao, X. From microscopy to nanoscopy via visible light. Light Sci. Appl. 2013, 2, e108. [Google Scholar] [CrossRef]
- Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photonics 2013, 7, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkovic, G.; Shafir, E. Optical methods for distance and displacement measurements. Adv. Opt. Photonics 2012, 4, 441–471. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Tu, C.; Yin, Z.; Lin, J.; Bao, F.A. Review of Experimental Techniques for Measuring Micro- to Nano-Particle- Laden Gas Flows. Appl. Sci. 2017, 7, 120. [Google Scholar] [CrossRef]
- Fischer, A. Imaging flow velocimetry with laser Mie scattering. Appl. Sci. 2017, 7, 1298. [Google Scholar] [CrossRef]
- Woisetschläger, J.; Göttlich, E. Recent Applications of Particle Image Velocimetry to Flow Research in Thermal Turbomachinery. In Particle Image Velocimetry; Schröder, A., Willert, C.E., Eds.; Springer: Berlin, Germany, 2007; pp. 311–331. [Google Scholar]
- Fischer, A.; König, J.; Czarske, J.; Rakenius, C.; Schmid, G.; Schiffer, H.P. Investigation of the tip leakage flow at turbine rotor blades with squealer. Exp. Fluids 2013, 54, 1462. [Google Scholar] [CrossRef]
- Candel, S.; Durox, D.; Schuller, T.; Bourgouin, J.F.; Moeck, J.P. Dynamics of Swirling Flames. Annu. Rev. Fluid Mech. 2014, 46, 147–173. [Google Scholar] [CrossRef]
- Schlüßler, R.; Bermuske, M.; Czarske, J.; Fischer, A. Simultaneous three-component velocity measurements in a swirl-stabilized flame. Exp. Fluids 2015, 56, 183. [Google Scholar] [CrossRef]
- Fansler, T.D.; Parrish, S.E. Spray measurement technology: A review. Meas. Sci. Technol. 2015, 26, 012002. [Google Scholar] [CrossRef]
- Gürtler, J.; Schlüßler, R.; Fischer, A.; Czarske, J. High-speed non-intrusive measurements of fuel velocity fields at high-pressure injectors. Opt. Lasers Eng. 2017, 90, 91–100. [Google Scholar] [CrossRef]
- Kentischer, T.J.; Schmidt, W.; Sigwarth, M.; Uexkuell, M.V. TESOS, a double Fabry-Perot instrument for solar spectroscopy. Astron. Astrophys. 1998, 340, 569–578. [Google Scholar]
- Werely, S.T.; Meinhardt, C.D. Recent Advances in Micro-Particle Image Velocimetry. Annu. Rev. Fluid Mech. 2010, 42, 557–576. [Google Scholar] [CrossRef]
- Li, C.H.; Benedick, A.J.; Fendel, P.; Glenday, A.G.; Kärtner, F.X.; Phillips, D.F.; Sasselov, D.; Szentgyorgyi, A.; Walsworth, R.L. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 2008, 452, 610–612. [Google Scholar] [CrossRef]
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352. [Google Scholar] [CrossRef]
- Saleh, B.E.A.; Teich, M.C. Fundamentals of Photonics; John Wiley & Sons: New York, NY, USA, 2007. [Google Scholar]
- Teich, M.C.; Saleh, B.Q.A. Squeezed states of light. Quantum Opt. 1989, 1, 153–191. [Google Scholar] [CrossRef]
- Fischer, A.; Czarske, J. Measurement uncertainty limit analysis with the Cramér-Rao bound in case of biased estimators. Measurement 2014, 54, 77–82. [Google Scholar] [CrossRef]
- Schervish, M.J. Theory of Statistics; Springer: Berlin, Germany, 1997. [Google Scholar]
- Kay, S.M. Fundamentals of Statistical Signal Processing; Prentice Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- Casella, G.; Berger, R.L. Statistical Inference; Duxbury Press: Belmont, CA, USA, 1990. [Google Scholar]
- Rao, C.R. Information and the accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 1945, 37, 81–91. [Google Scholar]
- Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Tripathi, G. A matrix extension of the Cauchy-Schwarz inequality. Econ. Lett. 1999, 63, 1–3. [Google Scholar] [CrossRef]
- Fischer, A.; Czarske, J. Measurement time dependency of asymptotic Cramér-Rao bound for an unknown constant in stationary Gaussian noise. Measurement 2015, 68, 182–188. [Google Scholar] [CrossRef]
- Joint Committee for Guides in Metrology (JCGM). JCGM 100:2008 Evaluation of Measurement Data—Guide to the Expression Of Uncertainty in Measurement. 2008. Available online: https://www.bipm.org/en/publications/guides/ (accessed on 7 March 2019).
- Fischer, A. Fisher information and Cramér-Rao bound for unknown systematic errors. Measurement 2018, 113, 131–136. [Google Scholar] [CrossRef]
- Stoica, P. On biased estimators and the unbiased Cramér bound lower bound. Signal Process. 1990, 21, 349–350. [Google Scholar] [CrossRef]
- Hero, A.O.; Fessler, J.A.; Usman, M. Exploring estimator bias-variance tradeoffs using the uniform CR bound. IEEE Trans. Signal Process. 1996, 44, 2026–2041. [Google Scholar] [CrossRef] [Green Version]
- Eldar, Y.C. Minimum Variance in Biased Estimation: Bounds and Asymptotically Optimal Estimators. IEEE Trans. Signal Process. 2004, 22, 1915–1930. [Google Scholar] [CrossRef]
- Eldar, Y.C. Uniformly Improving the Cramér-Rao Bound and Maximum-Likelihood Estimation. IEEE Trans. Signal Process. 2006, 54, 2943–2956. [Google Scholar] [CrossRef]
- Eldar, Y.C. Rethinking Biased Estimation: Improving Maximum Likelihood and the Cramér-Rao Bound. Found. Trends Signal Process. 2007, 1, 305–449. [Google Scholar] [CrossRef]
- Eldar, Y.C. MSE Bounds With Affine Bias Dominating the Cramér-Rao Bound. IEEE Trans. Signal Process. 2008, 56, 3824–3836. [Google Scholar] [CrossRef]
- Kay, S.; Eldar, Y.C. Rethinking Biased Estimation [Lecture Notes]. IEEE Signal Process. Mag. 2008, 25, 133–136. [Google Scholar] [CrossRef]
- Fréchet, M. Sur l’extension de cecertain évaluations statistiques au cas de petits échantillons. Rev. Int. Stat. Inst. 1943, 11, 182–205. [Google Scholar] [CrossRef]
- Darmois, G. Sur les limites de la dispersion de certaines estimations. Rev. Int. Stat. Inst. 1945, 13, 9–15. [Google Scholar] [CrossRef]
- Cramér, H. A contribution to the theory of statistical estimation. Scand. Actuar. J. 1946, 1946, 85–94. [Google Scholar] [CrossRef]
- Wijsman, R.A. On the attainment of the Cramér-Rao lower bound. Ann. Stat. 1973, 1, 538–542. [Google Scholar] [CrossRef]
- Zeira, A.; Nehorai, A. Frequency Domain Cramer-Rao Bound for Gaussian Processes. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1063–1066. [Google Scholar] [CrossRef]
- Bhattachyryya, A. On some analogues to the amount of information and their uses in statistical estimation. Synkhya 1946, 8, 1–14. [Google Scholar]
- Wolfowitz, J. The Efficiency of Sequential Estimates and Wald’s Equation for Sequential Processes. Ann. Math. Stat. 1947, 18, 165–308. [Google Scholar] [CrossRef]
- Gosh, J.K.; Purkayastha, S. Sequential Cramér-Rao and Bhattacharyya Bounds: Work of G. R. Seth and Afterwards. J. Indian Soc. Agric. Stat. 2010, 64, 137–144. [Google Scholar]
- Barankin, E.W. Locally Best Unbiased Estimates. Ann. Math. Stat. 1949, 20, 477–500. [Google Scholar] [CrossRef]
- McAulay, R.J.; Hofstetter, E.M. Barankin Bounds on Parameter Estimation. IEEE Trans. Inf. Theory 1971, 17, 669–676. [Google Scholar] [CrossRef]
- Chapman, D.G.; Robbins, H. Minimum variance estimation without regularity assumptions. Ann. Math. Stat. 1951, 22, 581–586. [Google Scholar] [CrossRef]
- Kiefer, J. On Minimum Variance Estimators. Ann. Math. Stat. 1952, 23, 493–655. [Google Scholar] [CrossRef]
- Fraser, D.A.S.; Guttman, I. Bhattacharyya without regularity assumptions. Ann. Math. Stat. 1952, 23, 493–655. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Kullback, S. Certain Inequalities in infomation theory and the Cramér-Rao inequalitity. Ann. Math. Stat. 1954, 25, 745–751. [Google Scholar] [CrossRef]
- Blyth, C.R.; Roberts, D.M. On inequalitites of Cramér-Rao type and admissibility proofs. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Theory of Statistics; University of California Press: Berkeley, CA, USA, 1972; pp. 17–30. [Google Scholar]
- Abel, J.S. A Bound on Mean-Square-Estimate Error. IEEE Trans. Inf. Theory 1993, 39, 1675–1680. [Google Scholar] [CrossRef]
- Arndt, C. Information Measures: Information And Its Description In Science And Engineering (Signals and Communication Technology); Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Gart, J.J. An Extension of the Cramer-Rao Inequality. Ann. Math. Stat. 1959, 30, 271–640. [Google Scholar] [CrossRef]
- Simonov, A.N. Cramer-Rao bounds in functional form: theory and application to passive optical ranging. J. Opt. Soc. Am. A 2014, 31, 2680–2693. [Google Scholar] [CrossRef]
- Wernet, M.P.; Pline, A. Particle displacement tracking technique and Cramer-Rao lower bound error in centroid estimates from CCD imagery. Exp. Fluids 1993, 15, 295–307. [Google Scholar] [CrossRef]
- Fischer, A. Messbarkeitsgrenzen Optischer Strömungsmessverfahren: Theorie und Anwendungen. In Dresdner Berichte zur Messsystemtechnik; Shaker: Aachen, Germany, 2013; Volume 8. [Google Scholar]
- Westerweel, J. Fundamentals of digital particle image velocimetry. Meas. Sci. Technol. 1997, 8, 1379–1392. [Google Scholar] [CrossRef]
- Westerweel, J. Theoretical analysis of the measurement precision in particle image velocimetry. Exp. Fluids 2000, 29, S3–S12. [Google Scholar] [CrossRef]
- Falconi, O. Maximum Sensitivities of Optical Direction and Twist Measuring Instruments. J. Opt. Soc. Am. 1964, 54, 1315–1320. [Google Scholar] [CrossRef]
- Lindegren, L. Photoelectric Astrometry—A Comparison of Methods for Precise Image Location. In Modern Astrometry; Institut für Astronomie (Universitäts-Sternwarte Wien): Vienna, Austria, 1978; pp. 197–217. [Google Scholar]
- Lindegren, L. Observing Photons in Space. In ISSI Scientific Report Series: High-Accuracy Positioning: Astrometry; Springer: New York, NY, USA, 2013; Volume 9, pp. 299–311. [Google Scholar]
- Fischer, A. Fundamental uncertainty limit for speckle displacement measurements. Appl. Opt. 2017, 56, 7013–7019. [Google Scholar] [CrossRef] [PubMed]
- Born, M.; Wolf, E. Principles of Optics; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Willert, C. Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas. Sci. Technol. 1997, 8, 1465–1479. [Google Scholar] [CrossRef]
- Prasad, A.K. Stereoscopic particle image velocimetry. Exp. Fluids 2000, 29, 103–116. [Google Scholar] [CrossRef]
- Goodman, J.W. Speckle Phenomena in Optics; Roberts and Company: Greenwood Village, CO, USA, 2007. [Google Scholar]
- Tausendfreund, A.; Alexe, G.; Stöbener, D.; Fischer, A. Application limits of digital speckle photography for in-process measurements in manufacturing processes. In Proceedings of the 2018 European Optical Society Biennial Meeting (EOSAM), Delft, The Netherlands, 8–12 October 2018; pp. 255–256. [Google Scholar]
- Chao, J.; Ward, E.S.; Ober, R.J. Fisher information theory for parameter estimation in single molecule microscopy: tutorial. J. Opt. Soc. Am. A 2016, 33, B36–B57. [Google Scholar] [CrossRef]
- Dorsch, R.G.; Häusler, D.; Herrmann, J.M. Laser triangulation: Fundamental uncertainty in distance measurement. Appl. Opt. 1994, 33, 1306–1314. [Google Scholar] [CrossRef]
- Pavliček, P.; Hýbl, O. White-light interferometry on rough surfaces—Measurement uncertainty caused by noise. Appl. Opt. 2012, 51, 465–473. [Google Scholar] [CrossRef]
- Häusler, G. Encyclopedia of Modern Optics; Elsevier: Oxford, UK, 2005; Volume 1, pp. 114–123. [Google Scholar]
- Ingelstam, E. Problems Related to the Accurate Interpretation of Microinterferograms; Interferometry, National Physical Laboratory Symposium No. 11; Her Majesty’s Stationery Office: London, UK, 1960; pp. 141–163. [Google Scholar]
- Pavliček, P.; Häusler, G. Methods for optical shape measurements and their measurement uncertainty. Int. J. Optomech. 2014, 8, 292–303. [Google Scholar] [CrossRef]
- Pavliček, P.; Pech, M. Shot noise limit of the optical 3D measurement methods for smooth surfaces. Meas. Sci. Technol. 2016, 27, 035205. [Google Scholar] [CrossRef]
- Tausendfreund, A.; Stöbener, D.; Fischer, A. Precise In-Process Strain Measurements for the Investigation of Surface Modification Mechanisms. J. Manuf. Mater. Process. 2018, 2, 9. [Google Scholar] [CrossRef]
- Eman, J.; Sundin, K.G.; Oldenburg, M. Spatially resolved observations of strain fields at necking and fracture of anisotropic hardened steel sheet material. Int. J. Solids Struct. 2009, 46, 2750–2756. [Google Scholar] [CrossRef] [Green Version]
- Tausendfreund, A.; Borchers, F.; Kohls, E.; Kuschel, S.; Stöbener, D.; Heinzel, C.; Fischer, A. Investigations on material loads during grinding by speckle photography. J. Manuf. Mater. Process. 2018, 2, 71. [Google Scholar] [CrossRef]
- Adrian, R.J. Particle-Imaging Techniques for Experimental Fluid Mechanics. Annu. Rev. Fluid Mech. 1991, 23, 261–304. [Google Scholar] [CrossRef]
- Maas, H.G.; Gruen, A.; Papantoniou, D. Particle tracking velocimetry in three-dimensional flows—Part 1: Photogrammetric determination of particle coordinates. Exp. Fluids 1993, 15, 133–146. [Google Scholar] [CrossRef]
- Adrian, R.J. Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: Speckle velocimetry vs. particle image velocimetry. Appl. Opt. 1984, 23, 1690–1691. [Google Scholar] [CrossRef]
- Adrian, R.J. Twenty years of particle image velocimetry. Exp. Fluids 2005, 39, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.H. A tracer-particle fluid velocity meter incorporating a laser. J. Phys. E Sci. Instrum. 1968, 1, 929–932. [Google Scholar] [CrossRef]
- Tanner, L. A particle timing laser velocity meter. Opt. Laser Technol. 1973, 5, 108–110. [Google Scholar] [CrossRef]
- Ator, J.T. Image-velocity sensing with parallel-slit reticles. J. Opt. Soc. Am. 1963, 53, 1416–1419. [Google Scholar] [CrossRef]
- Aizu, Y.; Asakura, T. Principles and development of spatial filtering velocimetry. Appl. Phys. B Lasers Opt. 1987, 43, 209–224. [Google Scholar] [CrossRef]
- Oliver, C.J. Accuracy in laser anemometry. J. Phys. D Appl. Phys. 1980, 13, 1145–1159. [Google Scholar] [CrossRef]
- Lading, L. Estimating time and time-lag in time-of-flight velocimetry. Appl. Opt. 1983, 22, 3637–3643. [Google Scholar] [CrossRef] [PubMed]
- Lading, L.; Jørgensen, T.M. Maximizing the information transfer in a quantum-limited light-scattering system. J. Opt. Soc. Am. A 1990, 7, 1324–1331. [Google Scholar] [CrossRef]
- Fischer, A.; Pfister, T.; Czarske, J. Derivation and comparison of fundamental uncertainty limits for laser-two-focus velocimetry, laser Doppler anemometry and Doppler global velocimetry. Measurement 2010, 43, 1556–1574. [Google Scholar] [CrossRef]
- Fischer, A. Fundamental uncertainty limit of optical flow velocimetry according to Heisenberg’s uncertainty principle. Appl. Opt. 2016, 55, 8787–8795. [Google Scholar] [CrossRef]
- Yeh, Y.; Cummins, H.Z. Localized Fluid Flow Measurements with an He-Ne Laser Spectrometer. Appl. Phys. Lett. 1964, 4, 176–178. [Google Scholar] [CrossRef]
- Tropea, C. Laser Doppler anemometry: Recent developments and future challenges. Meas. Sci. Technol. 1995, 6, 605–619. [Google Scholar] [CrossRef]
- Rife, D.C.; Boorstyn, R.R. Single-tone parameter estimation from discrete-time observations. IEEE Trans. Inf. Theory 1974, IT-20, 591–598. [Google Scholar] [CrossRef]
- Besson, O.; Galtier, F. Estimating Particles Velocity from Laser Measurements: Maximum Likelihood and Cramér-Rao Bounds. IEEE Trans. Signal Process. 1996, 12, 3056–3068. [Google Scholar] [CrossRef]
- Shu, W.Q. Cramér-Rao Bound of Laser Doppler Anemometer. IEEE Trans. Instrum. Meas. 2001, 50, 1770–1772. [Google Scholar]
- Sobolev, V.S.; Feshenko, A.A. Accurate Cramer-Rao Bounds for a Laser Doppler Anemometer. IEEE Trans. Instrum. Meas. 2006, 55, 659–665. [Google Scholar] [CrossRef]
- Meyers, J.F. Development of Doppler global velocimetry as a flow diagnostic tool. Meas. Sci. Technol. 1995, 6, 769–783. [Google Scholar] [CrossRef]
- Charrett, T.O.H.; Ford, H.D.; Nobes, D.S.; Tatam, R.P. Two-Frequency Planar Doppler Velocimetry (2-ν-PDV). Rev. Sci. Instrum. 2004, 75, 4487–4496. [Google Scholar] [CrossRef]
- Fischer, A.; Büttner, L.; Czarske, J.; Eggert, M.; Grosche, G.; Müller, H. Investigation of time-resolved single detector Doppler global velocimetry using sinusoidal laser frequency modulation. Meas. Sci. Technol. 2007, 18, 2529–2545. [Google Scholar] [CrossRef]
- Landolt, A.; Rösgen, T. Global Doppler frequency shift detection with near-resonant interferometry. Exp. Fluids 2009, 47, 733–743. [Google Scholar] [CrossRef]
- Lu, Z.H.; Charett, T.O.H.; Tatam, R.P. Three-component planar velocity measurements using Mach-Zehnder interferometric filter-based planar Doppler velocimetry (MZI-PDV). Meas. Sci. Technol. 2009, 20, 034019. [Google Scholar] [CrossRef]
- McKenzie, R.L. Measurement capabilities of planar Doppler velocimetry using pulsed lasers. Appl. Opt. 1996, 35, 948–964. [Google Scholar] [CrossRef]
- Fischer, A.; Büttner, L.; Czarske, J.; Eggert, M.; Müller, H. Measurement uncertainty and temporal resolution of Doppler global velocimetry using laser frequency modulation. Appl. Opt. 2008, 47, 3941–3953. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Czarske, J. Signal processing efficiency of Doppler global velocimetry with laser frequency modulation. Optik 2010, 121, 1891–1899. [Google Scholar] [CrossRef]
- Fischer, A. Model-based review of Doppler global velocimetry techniques with laser frequency modulation. Opt. Lasers Eng. 2017, 93, 19–35. [Google Scholar] [CrossRef]
- Pfister, T.; Fischer, A.; Czarske, J. Cramér-Rao lower bound of laser Doppler measurements at moving rough surfaces. Meas. Sci. Technol. 2011, 22, 055301. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, A. Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise. Entropy 2019, 21, 264. https://doi.org/10.3390/e21030264
Fischer A. Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise. Entropy. 2019; 21(3):264. https://doi.org/10.3390/e21030264
Chicago/Turabian StyleFischer, Andreas. 2019. "Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise" Entropy 21, no. 3: 264. https://doi.org/10.3390/e21030264
APA StyleFischer, A. (2019). Limiting Uncertainty Relations in Laser-Based Measurements of Position and Velocity Due to Quantum Shot Noise. Entropy, 21(3), 264. https://doi.org/10.3390/e21030264