Peltier Supercooling in Transient Thermoelectrics: Spatial Temperature Profile and Characteristic Cooling Length
Abstract
:1. Introduction
2. Thermodynamic Modelling for Pulse Operation of Thermoelectric Cooler
3. Transient State Equations
3.1. Normalized Pulses Magnitude
3.2. Equation Solution by Finite Element Method
3.3. Cooling Power ()
4. Results and Discussion
4.1. Temperature Profile: Constant Pulse of Cooling Load
4.2. Temperature Profile: Variable Pulse of Cooling Load
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
A | Area (m) |
COP | Coefficient of performance |
CPM | Constant material property |
I | Electrical current (A) |
Electrical current density (A m) | |
Heat flux (W m) | |
L | Length (m) |
Cooling power (W) | |
Heat flow released (W) | |
T | Temperature (K) |
Cold side temperature (K) | |
Hot side temperature (K) | |
TEC | Thermoelectric cooler |
Greek letters | |
Seebeck coefficient (V K) | |
Difference | |
Thermal conductivity (W mK) | |
Electrical resistivity [(m)] | |
Thomson coefficient [V K] | |
Subscripts | |
i | local subdomain |
min | Minimum values |
max | Maximum values |
pulse | appropriate for pulse operation |
steady | appropriate for steady operation |
References
- Rowe, D. Handbook of Thermoelectics; CRC Press: Boca Raton, FL, USA, 1995; pp. 214–219. [Google Scholar]
- Goupil, C. Continuum Theory and Modeling of Thermoelectric Elements; Wiley-VCH: Weinheim, Germany, 2016; pp. 114–118. [Google Scholar]
- Seifert, W.; Ueltzen, M.; Müller, E. One-dimensional modelling of thermoelectric cooling. Phys. Stat. Sol. 2002, 194, 277–290. [Google Scholar] [CrossRef]
- Thonhauser, T.; Mahan, G.; Zikatanov, L.; Roe, J. Improved supercooling in transient thermoelectrics. Appl. Phys. Lett. 2004, 85, 3247. [Google Scholar] [CrossRef]
- Ming, M.; Jianlin, Y. A numerical study on the temperature overshoot characteristic of a realistic thermoelectric module under a current pulse operation. Int. J. Heat Mass Transf. 2014, 72, 234–241. [Google Scholar]
- Moreno-Navarro, P.; Perez-Aparicio, J.; Gomez-Hernandez, J. Optimization of pulsed thermoelectric materials using simulated annealing and non-linear finite elements. Appl. Therm. Eng. 2017, 120, 603–613. [Google Scholar] [CrossRef]
- Snyder, J.; Fleurial, J.; Caillat, T.; Yang, R.; Chen, G. Supercooling of peltiercooler using a current pulse. J. Appl. Phys. 2002, 92, 1564. [Google Scholar] [CrossRef]
- Alfred, P.; Jeffrey, A. Peltier supercooling with isosceles current pulses: A response surface perspective. ECS J. Solid State Sci. Technol. 2017, 6, 3045–3054. [Google Scholar]
- Yang, R.; Chen, G.; Kumar, A.R.; Snyder, G.; Fleurial, J.P. Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Convers. Manag. 2005, 46, 1407–1421. [Google Scholar] [CrossRef]
- Meng, J.-H.; Wang, X.-D.; Zhang, X.-X. Transient modeling and Dynamic characteristics of thermoelectric cooler. Appl. Energy 2013, 108, 340–348. [Google Scholar] [CrossRef]
- Manikandan, S.; Kaushik, S.; Yang, R. Modified pulse operation of thermoelectric coolers for building cooling applications. Energy Convers. Manag. 2017, 140, 145–156. [Google Scholar] [CrossRef]
- Cheng, C.; Huang, S.; Cheng, T. A three-dimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers. Int. J. Heat Mass Transf. 2010, 53, 2001–2011. [Google Scholar] [CrossRef]
- Shen, L.M.; Xiao, F.; Chen, H.X.; Wang, S. Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element. Int. J. Refrig. 2012, 35, 1156–1165. [Google Scholar] [CrossRef]
- Ma, M.; Yu, J. Experimental study on transient cooling characteristics of a realistic thermoelectric module under a current pulse operation. Energy Convers. Manag. 2016, 15, 210–216. [Google Scholar] [CrossRef]
- Lv, H.; Wang, X.; Meng, J.; Wang, T.; Yan, W. Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect. Appl. Energy 2016, 1, 285–292. [Google Scholar] [CrossRef]
- Shen, L.; Chen, H.; Xiao, F.; Yang, Y.; Wang, S. The step-change cooling performance of miniature thermoelectric module for pulse laser. Energy Convers. Manag. 2014, 30, 39–45. [Google Scholar] [CrossRef]
- Lineykin, S.; Ben-Yaakov, S. Modeling and Analysis of Thermoelectric Modules. IEEE Trans. Ind. Appl. 2007, 43, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Mui, Y.; Tarin, M. Analysis of thermoelectric cooler performance for high power electronic packages. Appl. Therm. Eng. 2010, 30, 561–568. [Google Scholar] [CrossRef]
- Koh, Y.; Yazawa, K.; Shakouri, A. Performance and mass optimization of thermoelectric microcoolers. Int. J. Therm. Sci. 2015, 97, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Bian, Z.; Shakouri, A. Pulsed cooling of inhomogeneous thermoelectric materials. J. Phys. D Appl. Phys. 2007, 40, 4376–4381. [Google Scholar] [CrossRef]
- Thomas-Peter, F.; Hermann-Georg, M. Classification and Overview of Meshfree Methods; Institute of Scientific Computing: Brunswick, Germany, 2004. [Google Scholar]
- Vieri, B.; Lorenzo, L. A generalization of Gauss’ divergence theorem. arXiv, 2014; arXiv:1406.4349. [Google Scholar]
Property | Material | Unit |
---|---|---|
V K | ||
W m K | ||
m | ||
Kg m | ||
240 | K | |
A | m | |
L | m | |
200 | J kg K |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Ortega, P.E.; Olivares-Robles, M.A. Peltier Supercooling in Transient Thermoelectrics: Spatial Temperature Profile and Characteristic Cooling Length. Entropy 2019, 21, 226. https://doi.org/10.3390/e21030226
Ruiz-Ortega PE, Olivares-Robles MA. Peltier Supercooling in Transient Thermoelectrics: Spatial Temperature Profile and Characteristic Cooling Length. Entropy. 2019; 21(3):226. https://doi.org/10.3390/e21030226
Chicago/Turabian StyleRuiz-Ortega, Pablo Eduardo, and Miguel Angel Olivares-Robles. 2019. "Peltier Supercooling in Transient Thermoelectrics: Spatial Temperature Profile and Characteristic Cooling Length" Entropy 21, no. 3: 226. https://doi.org/10.3390/e21030226
APA StyleRuiz-Ortega, P. E., & Olivares-Robles, M. A. (2019). Peltier Supercooling in Transient Thermoelectrics: Spatial Temperature Profile and Characteristic Cooling Length. Entropy, 21(3), 226. https://doi.org/10.3390/e21030226