Entropy Analysis of Soccer Dynamics
Abstract
:1. Introduction
2. Dataset and Description of the Leagues
3. Mathematical Fundamentals
3.1. Information Measures
3.2. A Fractional Calculus Approach to Information Measures
3.3. Multidimensional Scaling
4. Analysis and Visualization of Soccer Data
4.1. Analysis of Soccer Data Based on Information Measures
- —goals scored at home;
- —goals scored at home of the adversary.
- define a dimensional matrix, A, initialized with void elements;
- at the end of round update such that and . Therefore, at each round, r, a total of cells of are updated with new information based on the results of the matches;
- normalize the matrix by calculating , where:
- interpret as a 2-D probability mass function, and calculate the information measures , , and .
4.2. Clustering and Visualization of Soccer Data Based on Information Measures
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wallace, J.L.; Norton, K.I. Evolution of World Cup soccer final games 1966–2010: Game structure, speed and play patterns. J. Sci. Med. Sport 2014, 17, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Dunning, E. Sport Matters: Sociological Studies of Sport, Violence And Civilisation; Routledge: London, UK; New York, NY, USA, 1999. [Google Scholar]
- Vilar, L.; Araújo, D.; Davids, K.; Bar-Yam, Y. Science of winning soccer: Emergent pattern-forming dynamics in association football. J. Syst. Sci. Complex. 2013, 26, 73–84. [Google Scholar] [CrossRef]
- Passos, P.; Davids, K.; Araujo, D.; Paz, N.; Minguéns, J.; Mendes, J. Networks as a novel tool for studying team ball sports as complex social systems. J. Sci. Med. Sport 2011, 14, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Zengyuan, Y.; Broich, H.; Seifriz, F.; Mester, J. Kinetic energy analysis for soccer players and soccer matches. Prog. Appl. Math. 2011, 1, 98–105. [Google Scholar]
- Couceiro, M.S.; Clemente, F.M.; Martins, F.M.; Machado, J.A.T. Dynamical stability and predictability of football players: The study of one match. Entropy 2014, 16, 645–674. [Google Scholar] [CrossRef]
- McGarry, T.; Anderson, D.I.; Wallace, S.A.; Hughes, M.D.; Franks, I.M. Sport competition as a dynamical self-organizing system. J. Sports Sci. 2002, 20, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Grehaigne, J.F.; Bouthier, D.; David, B. Dynamic-system analysis of opponent relationships in collective actions in soccer. J. Sports Sci. 1997, 15, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Camerino, O.F.; Chaverri, J.; Anguera, M.T.; Jonsson, G.K. Dynamics of the game in soccer: Detection of T-patterns. Eur. J. Sports Sci. 2012, 12, 216–224. [Google Scholar] [CrossRef]
- Mack, S.H.M.G.; Dutler, K.E.; Mintah, J.K. Chaos Theory: A New Science for Sport Behavior? Athl. Insight 2000, 2, 8–16. [Google Scholar]
- Travassos, B.; Araújo, D.; Correia, V.; Esteves, P. Eco-dynamics approach to the study of team sports performance. Open Sports Sci. J. 2010, 3, 56–57. [Google Scholar] [CrossRef]
- Neuman, Y.; Israeli, N.; Vilenchik, D.; Cohen, Y. The Adaptive Behavior of a Soccer Team: An Entropy-Based Analysis. Entropy 2018, 20, 758. [Google Scholar] [CrossRef]
- Barros, C.P.; Leach, S. Performance evaluation of the English Premier Football League with data envelopment analysis. Appl. Econ. 2006, 38, 1449–1458. [Google Scholar] [CrossRef]
- Criado, R.; García, E.; Pedroche, F.; Romance, M. A new method for comparing rankings through complex networks: Model and analysis of competitiveness of major European soccer leagues. Chao Interdiscip. J. Nonlinear Sci. 2013, 23, 043114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, T.; Mucha, P.J.; Porter, M.A. Random walker ranking for NCAA division IA football. Am. Math. Mon. 2007, 114, 761–777. [Google Scholar] [CrossRef]
- Machado, J.T.; Lopes, A.M. Multidimensional scaling analysis of soccer dynamics. Appl. Math. Model. 2017, 45, 642–652. [Google Scholar] [CrossRef]
- Machado, J.T.; Lopes, A.M. On the mathematical modeling of soccer dynamics. Commun. Nonlinear Sci. Numer. Simul. 2017, 53, 142–153. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Latora, V.; Baranger, M.; Rapisarda, A.; Tsallis, C. The rate of entropy increase at the edge of chaos. Phys. Lett. A 2000, 273, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Machado, J.T.; Costa, A.C.; Quelhas, M.D. Entropy analysis of the DNA code dynamics in human chromosomes. Comput. Math. Appl. 2011, 62, 1612–1617. [Google Scholar] [CrossRef] [Green Version]
- Basseville, M. Divergence measures for statistical data processing—An annotated bibliography. Signal Process. 2013, 93, 621–633. [Google Scholar] [CrossRef]
- Seghouane, A.K. A Kullback–Leibler divergence approach to blind image restoration. IEEE Trans. Image Process. 2011, 20, 2078–2083. [Google Scholar] [CrossRef] [PubMed]
- Bissinger, B.E.; Culver, R.L.; Bose, N. Minimum Hellinger distance based classification of underwater acoustic signals. In Proceedings of the 43rd Annual Conference on Information Sciences and Systems, Baltimore, MD, USA, 18–20 March 2009; pp. 47–49. [Google Scholar]
- Van Erven, T.; Harremos, P. Rényi divergence and Kullback–Leibler divergence. IEEE Trans. Inf. Theory 2014, 60, 3797–3820. [Google Scholar] [CrossRef]
- Hamza, A.B.; Krim, H. Jensen–Rényi divergence measure: Theoretical and computational perspectives. In Proceedings of the IEEE International Symposium on Information Theory, Yokohama, Japan, 29 June–4 July 2003; p. 257. [Google Scholar]
- Mohamed, W.; Hamza, A.B. Medical image registration using stochastic optimization. Opt. Lasers Eng. 2010, 48, 1213–1223. [Google Scholar] [CrossRef]
- Machado, J.A.T.; Mendes Lopes, A. Fractional Jensen–Shannon analysis of the scientific output of researchers in fractional calculus. Entropy 2017, 19, 127. [Google Scholar] [CrossRef]
- Changpin, L.; Zeng, F. Numerical Methods for Fractional Calculus; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Changpin, L.; Yujiang, W.; Ruisong, Y. Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis; World Scientific: Singapore, 2013. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Ionescu, C.M. The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics; Springer: London, UK, 2013. [Google Scholar]
- Yang, X.J.; Baleanu, D.; Baleanu, M.C. Observing diffusion problems defined on Cantor sets in different coordinate systems. Therm. Sci. 2015, 19, 151–156. [Google Scholar] [CrossRef]
- Yang, X.J.; Gao, F.; Srivastava, H. A new computational approach for solving nonlinear local fractional PDEs. J. Comput. Appl. Math. 2018, 339, 285–296. [Google Scholar] [CrossRef]
- Tar, J.K.; Bitó, J.F.; Kovács, L.; Faitli, T. Fractional Order PID-type Feedback in Fixed Point Transformation-based Adaptive Control of the FitzHugh-Nagumo Neuron Model with Time-delay. IFAC-PapersOnLine 2018, 51, 906–911. [Google Scholar] [CrossRef]
- Lopes, A.M.; Machado, J. Fractional order models of leaves. J. Vib. Control 2014, 20, 998–1008. [Google Scholar] [CrossRef]
- Machado, J.T.; Lopes, A.M. The persistence of memory. Nonlinear Dyn. 2015, 79, 63–82. [Google Scholar] [CrossRef]
- Machado, J.; Lopes, A.M. Analysis of natural and artificial phenomena using signal processing and fractional calculus. Fract. Calc. Appl. Anal. 2015, 18, 459–478. [Google Scholar] [CrossRef]
- Machado, J.; Lopes, A.; Duarte, F.; Ortigueira, M.; Rato, R. Rhapsody in fractional. Fract. Calc. Appl. Anal. 2014, 17, 1188–1214. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.; Mata, M.E.; Lopes, A.M. Fractional state space analysis of economic systems. Entropy 2015, 17, 5402–5421. [Google Scholar] [CrossRef]
- Sumelka, W.; Voyiadjis, G.Z. A hyperelastic fractional damage material model with memory. Int. J. Solids Struct. 2017, 124, 151–160. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing: Singapore, 2000. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.; Kilbas, A.; Marichev, I. Fractional Integrals and Derivatives, Translated from the 1987 Russian Original; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Jaynes, E. Information Theory and Statistical Mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Khinchin, A. Mathematical Foundations of Information Theory; Dover: New York, NY, USA, 1957. [Google Scholar]
- Korn, G.A.; Korn, T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Shannon, C.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Cover, T.; Thomas, J. Elements of Information Theory, 1st ed.; John Wiley & Sons: New York, NY, USA, 1991. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Valério, D.; Trujillo, J.; Rivero, M.; Machado, J.; Baleanu, D. Fractional Calculus: A Survey of Useful Formulas. Eur. Phys. J. Spec. Top. 2013, 222, 1827–1846. [Google Scholar] [CrossRef]
- Machado, J. Fractional order generalized information. Entropy 2014, 16, 2350–2361. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H.; Haq, M.I.U.; Muhammad Saqib, D.B. A Survey on Multidimensional Scaling. ACM Comput. Surv. (CSUR) 2018, 51, 47. [Google Scholar] [CrossRef]
- Willems, J.C.; Polderman, J.W. Introduction to Mathematical Systems Theory: A Behavioral Approach; Springer Science & Business Media: New York, NY, USA, 2013; Volume 26. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, A.M.; Tenreiro Machado, J.A. Entropy Analysis of Soccer Dynamics. Entropy 2019, 21, 187. https://doi.org/10.3390/e21020187
Lopes AM, Tenreiro Machado JA. Entropy Analysis of Soccer Dynamics. Entropy. 2019; 21(2):187. https://doi.org/10.3390/e21020187
Chicago/Turabian StyleLopes, António M., and J. A. Tenreiro Machado. 2019. "Entropy Analysis of Soccer Dynamics" Entropy 21, no. 2: 187. https://doi.org/10.3390/e21020187
APA StyleLopes, A. M., & Tenreiro Machado, J. A. (2019). Entropy Analysis of Soccer Dynamics. Entropy, 21(2), 187. https://doi.org/10.3390/e21020187