A Method for Detecting Dynamic Mutation of Complex Systems Using Improved Information Entropy
Abstract
:1. Introduction
2. Methodology
2.1. Basic Definition of the Proposed Improved Information Entropy
2.2. The IIE Characteristics of Typical Signals
2.3. Dynamics Mutation Simulation of Time Series Based on IIE
2.4. Running Time of the IIE Compared with that of the PE
3. Application Cases Using IIE for Defect Diagnosis of Bearings
3.1. Rolling Bearing Fault Diagnosis Based on IIE
- (1)
- Acquire data.
- (2)
- Constructing time series: The vibration signals collected from rolling bearings are constructed into time series .
- (3)
- Calculating the and of time series .
- (4)
- Constructing the PMF p(i).
- (5)
- Computing the Shannon entropy H.
- (6)
- Obtaining the parameter of IIE by normalizing H with data length N.
- (7)
- Determining the state of the system.
3.2. Experimental Result Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henao, H.; Capolino, G.A.; Fernandez-Cabanas, M.; Filippetti, F.; Bruzzese, C.; Strangas, E.; Pusca, R.; Estima, J.; Riera-Guasp, M.; Hedayati-Kia, S. Trends in fault diagnosis for electrical machines: A review of diagnostic techniques. IEEE Ind. Electron. Mag. 2014, 8, 31–42. [Google Scholar] [CrossRef]
- Frosini, L.; Harlişca, C.; Szabó, L. Induction machine bearing fault detection by means of statistical processing of the stray flux measurement. IEEE Trans. Ind. Electron. 2015, 62, 1846–1854. [Google Scholar] [CrossRef]
- Kui, L.I.; Fan, Y.; Jiande, W.U. Research on bearing fault intelligent diagnosis method based on mrsvd and vpmcd. Comput. Eng. Appl. 2016, 52, 153–157. [Google Scholar]
- Dan, X.; Jian, C.; Automatization, S.O. Method of roller bearing fault diagnosis based on feature fusion of emd entropy. J. Aerosp. Power 2015, 30, 1149–1155. [Google Scholar]
- Liu, Y.; He, B.; Liu, F.; Lu, S.; Zhao, Y. Feature fusion using kernel joint approximate diagonalization of eigen-matrices for rolling bearing fault identification. J. Sound Vib. 2016, 385, 389–401. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, X.R.; Du, J. Characteristic parameter extraction of rolling bearing vibration phase diagram and its application in fault diagnosis. Bearing 2010, 12, 34–37. [Google Scholar]
- Zhou, X.; Jiang, Z.; Ma, F. Fault diagnosis of rolling bearing based on improved hht energy entropy and svm. J. Mech. Transm. 2016, 12, 164–168. [Google Scholar]
- Pandarakone, S.E.; Mizuno, Y.; Nakamura, H. Distinct fault analysis of induction motor bearing using frequency spectrum determination and support vector machine. IEEE Trans. Ind. Appl. 2017, 53, 3049–3056. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Ji, J. Approach for bearing fault diagnosis based on kpca and elm. J. Electron. Meas. Instrum. 2018, 2, 23–29. [Google Scholar]
- Ding, R.; Li, J. Nonlinear finite-time lyapunov exponent and predictability. Phys. Lett. A 2007, 364, 396–400. [Google Scholar] [CrossRef]
- Muruganatham, B.; Jayakumar, T. Detection of faulty ball bearing using symbolic dynamics. Int. J. Cond. Monit. 2013, 3, 23–34. [Google Scholar] [CrossRef]
- Chen, W.J.; Wu, J.Q. Application of hilbert-huang transform in wind turbine′s mainshaft bearing fault diagnosis. Bearing 2013, 6, 59–62. [Google Scholar]
- Hu, A.; Xiang, L.; Zhang, Y. Experimental study on the intrawave frequency modulation characteristic of rotor rub and crack fault. Mech. Syst. Signal Process. 2019, 118, 209–225. [Google Scholar] [CrossRef]
- Basaran, C.; Yan, C.Y. A Thermodynamic Framework for Damage Mechanics of Solder Joints. J. Electron. Packag. 1998, 120, 379–384. [Google Scholar] [CrossRef]
- Basaran, C.; Nie, S. An irreversible thermodynamics theory for damage mechanics of solids. Int. J. Damage Mech. 2016, 13, 205–223. [Google Scholar] [CrossRef]
- Sosnovskiy, L.; Sherbakov, S. Mechanothermodynamic entropy and analysis of damage state of complex systems. Entropy 2016, 18, 268. [Google Scholar] [CrossRef]
- Yan, R.; Gao, R.X. Approximate entropy as a diagnostic tool for machine health monitoring. Mech. Syst. Signal Process. 2007, 21, 824–839. [Google Scholar] [CrossRef]
- Cheng, J.S.; Xing-Wei, M.A.; Yu, Y. Rolling bearing fault diagnosis method based on permutation entropy and vpmcd. J. Vib. Shock 2014, 34, 802–806. [Google Scholar]
- Zhang, L.; Xiong, G.; Liu, H.; Zou, H.; Guo, W. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference. Expert Syst. Appl. 2010, 37, 6077–6085. [Google Scholar] [CrossRef]
- Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 2007, 89, 705–708. [Google Scholar] [CrossRef]
- Sheng, J.L.; Zhou, M.S.; Guo, Z.P.; Liu, Z. Fault diagnosis for transformer based on fuzzy entropy. Mar. Electr. Electron. Eng. 2008, 759–762. [Google Scholar]
- Zhao, Z.H.; Yang, S.P. Sample entropy-based roller bearing fault diagnosis method. J. Vib. Shock 2012, 31, 136–140. [Google Scholar]
- Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102. [Google Scholar] [CrossRef]
- Feng, F.; Rao, G.; Jiang, P.; Si, A. Research on Early Fault Diagnosis for Rolling Bearing Based on Permutation Entropy Algorithm. In Proceedings of the IEEE 2012 Prognostics and System Health Management Conference, Beijing, China, 23–25 May 2012; pp. 1–5. [Google Scholar]
- Frank, B.; Pompe, B.; Schneider, U.; Hoyer, D. Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses. Med. Biol. Eng. Comput. 2006, 44, 179–187. [Google Scholar] [CrossRef]
- Feng, F. Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy. J. Mech. Eng. 2012, 48, 73–79. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, M.; Deng, W.; Yang, X. A new feature extraction method based on eemd and multi-scale fuzzy entropy for motor bearing. Entropy 2016, 19, 14. [Google Scholar] [CrossRef]
- Wu, S.-D.; Wu, C.-W.; Wu, P.-H.; Ding, J.-J. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy 2012, 14, 2650–2654. [Google Scholar] [CrossRef]
- Sheng, S.; Zhang, L.; Gao, R.X. A systematic sensor-placement strategy for enhanced defect detection in rolling bearings. IEEE Sens. J. 2006, 6, 1346–1354. [Google Scholar] [CrossRef]
- Shao, Y.; Di, L.U.; Yang, G.X. Application of fractional fourier transform in fault diagnostics of rolling bearing. J. Harbin Univ. Sci. Technol. 2017, 3, 68–72. [Google Scholar]
- Ding, X.W.; Liu, B.; Liu, J.Z.; Wang, C.G.; Riemenscheider, S.D.; Hu, X.Y. Fault diagnosis of freight car rolling element bearings with adaptive short-time fourier transform. China Railw. Sci. 2005, 26, 24–27. [Google Scholar]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. Mafft: A novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.G.; Tong, Q.Y. Easily adaptable complexity measure for finite time series. Phys. Rev. E 2008, 77, 066215. [Google Scholar] [CrossRef]
- Schreiber, T. Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions. Phys. Rev. Lett. 1997, 78, 843–846. [Google Scholar] [CrossRef]
- Lu, S.; Liu, F.; Yang, H.; Li, W.; Zhou, R. Transient Signal Period Detection for Bearing Fault Diagnosis Using Amplitude Demodulation and Signal Segmentation and Labeling. In Proceedings of the 11th IEEE Conference on Industrial Electronics and Applications, Hefei, China, 5–7 June 2016; pp. 1389–1393. [Google Scholar]
- Meng, Z.; Zhan, X.; Li, J.; Pan, Z. An enhancement denoising autoencoder for rolling bearing fault diagnosis. Measurement 2018, 130, 448–454. [Google Scholar] [CrossRef]
- Yan, R.; Liu, Y.; Gao, R.X. Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines. Mech. Syst. Signal Process. 2012, 29, 474–484. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration. Available online: http://ti.Arc.Nasa.Gov/tech/dash/pcoe/prognostic-data-repository/#bearing (accessed on 28 July 2015).
- Qiu, H.; Lee, J.; Lin, J.; Yu, G. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. J. Sound Vib. 2006, 289, 1066–1090. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | 0.008 | 0.008 | 0.009 | 0.023 | 0.093 | 0.518 | 3.615 |
2 | 0.003 | 0.006 | 0.009 | 0.022 | 0.090 | 0.512 | 3.515 |
3 | 0.003 | 0.006 | 0.009 | 0.022 | 0.088 | 0.510 | 3.545 |
4 | 0.003 | 0.006 | 0.009 | 0.022 | 0.088 | 0.533 | 3.432 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, B.; Zhang, H.; Liu, Y.; Pan, D.; Zheng, P.; Xu, L.; Li, G. A Method for Detecting Dynamic Mutation of Complex Systems Using Improved Information Entropy. Entropy 2019, 21, 115. https://doi.org/10.3390/e21020115
Ju B, Zhang H, Liu Y, Pan D, Zheng P, Xu L, Li G. A Method for Detecting Dynamic Mutation of Complex Systems Using Improved Information Entropy. Entropy. 2019; 21(2):115. https://doi.org/10.3390/e21020115
Chicago/Turabian StyleJu, Bin, Haijiao Zhang, Yongbin Liu, Donghui Pan, Ping Zheng, Lanbing Xu, and Guoli Li. 2019. "A Method for Detecting Dynamic Mutation of Complex Systems Using Improved Information Entropy" Entropy 21, no. 2: 115. https://doi.org/10.3390/e21020115
APA StyleJu, B., Zhang, H., Liu, Y., Pan, D., Zheng, P., Xu, L., & Li, G. (2019). A Method for Detecting Dynamic Mutation of Complex Systems Using Improved Information Entropy. Entropy, 21(2), 115. https://doi.org/10.3390/e21020115