ULF Pre-Seismic Geomagnetic Anomalous Signal Related to Mw8.1 Offshore Chiapas Earthquake, Mexico on 8 September 2017
Abstract
:1. Introduction
2. Methodology, Data Collection, Processing and Analyzing
- Statistical analysis based on the standardized random variable equation was applied for the two particular cases:
- to assess the singularity of the pre-seismic anomalous signal, related to the Mw8.1 earthquake, observed on the daily mean distributions of the BPOL (TEO) and BOPL (TUC), by using following relation:BPOL* = (X − Y)/Z,
- -
- X is the value of the of BPOL for a particular day, starting with 1 September 2017 and ending on 26 September 2017;
- -
- Y is 30 days running average of BPOL for consecutive days before a particular day;
- -
- Z is 30 days running average of SD obtained for 30 consecutive days before a particular day;
- -
- BPOL* emphasizes the threshold for anomaly using SD;
- to differentiate the transient local anomalies associated with an Mw8.1 earthquake by the internal and external parts of the geomagnetic field, taking the Geomagnetic Observatory (TUC) as reference, we used the following relation:BPOL*(TUC-TEO) = (A − B)/W,
- -
- A is the value of the (BPOL TUC-BPOL TEO) for a particular day, starting with 1 September and ending with 26 September 2017;
- -
- B is 30 days running average of (BPOL TUC-BPOL TEO) before the particular day;
- -
- W is 30 days running average of (SD TUC-SD TEO) before the particular day;
- -
- BPOL*(TUC-TEO) time series emphasizing the threshold for anomaly using SD.
3. Results
3.1. BPOL and BPOL* Distributions Carried Out at the TEO Observatory Using Relations (1) and (4)
3.2. BPOL and BPOL* Distributions Carried Out at the TUC Observatory Using Relations (1) and (4)
3.3. BPOL* (TUC-TEO) Time Series and BPOL (TUC-TEO) Hourly Mean Distribution
- First one based on Relation (5) when we used the Geomagnetic Observatory (TUC) as reference and result is shown in Figure 7;
4. Discussion and Conclusions
- an anomalous interval of BPOL* (TEO), extended on 8 and 9 September, with values of 7.3 and 3.8, which are considered to be co- and post-seismic effects related to both Mw8.1 earthquake and the after-shocks with magnitude higher than 5, as shown in Figure 4; and
- BPOL* (TUC) time series with an anomalous interval observed on 8 and 9 September, having values of 8.3 and 4.1, that could be associated with the Mw8.1 earthquake and the after-shocks, both emphasizing co- and post-seismic effects; see Figure 6.
- A very clear anomaly of a maximum, extended between 6–10 September 10, with an apex of about 11.862 on 8 September, is detected on the ABS BPOL* (TUC-TEO) time series carried out on 1–26 September 2017 by using Relation (5) and is shown in Figure 7.
- The new time series of BPOL (TUC-TEO), obtained as hourly mean distribution on the interval 7–9 September, indicates a pre-seismic anomaly, placed between hours 1 and 4 on 8 September; see Figure 10.
- The anomalous behavior, manifested on the both distributions ABS*BPOL (TUC-TEO) and BPOL (TUC-TEO), indicate that their variability is not random, being significant and reliable pre-seismic signals associated with Mw8.1 earthquake. The last one, with magnitude higher than 4∙SD, was triggered with about five hours prior to the onset of the Mw8.1 seismic event, on 8 September 2017; see Figure 10.
- The anomalies are observed in the BPOL (TUC-TEO) distribution on 8 and 9 September, after the main shock are associated with the superposition effects of a lot of after-shocks with magnitudes higher than 5.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hayakawa, M. Earthquake Prediction by Radio Techniques; Wiley: Singapore, 2015; p. 294. [Google Scholar]
- Gokhberg, M.; Yoshino, T.; Morgunov, V. Results of recording operative electromagnetic earthquake precursor in Japan. Phys. Solid Earth 1982, 18, 144–146. [Google Scholar]
- Hayakawa, M.; Fujinawa, Y. Electromagnetic Phenomena Related to the Earthquake Prediction; Terra Scientific Publishing Company: Tokyo, Japan, 1994; p. 677. [Google Scholar]
- Huang, Q. Retrospective investigation of geophysical data possibly associated with the Ms8.0 Wenchuan earthquake in Sichuan, China. J. Asian Earth Sci. 2011, 41, 421–427. [Google Scholar] [CrossRef]
- Korytenko, Y.A.; Matiashvili, T.G.; Voronov, P.M.; Korytenko, E.A. Observation of electromagnetic ultra-low frequency lithospheric emission in the Caucasian seismically active zone and their connection with earthquakes. In Electromagnetic Phenomena Related to Earthquake Prediction; Hayakawa, M., Fujinawa, A.Y., Eds.; Terra Scientific Publishing Company: Tokyo, Japan, 1994; pp. 175–180. [Google Scholar]
- Nagao, T.; Enomoto, Y.; Fujinawa, Y.; Hata, M.; Hayakawa, M.; Huang, Q.; Izutsu, J.; Kushida, Y.; Maeda, K.; Oike, K.; et al. Electromagnetic anomalies associated with 1995 Kobe earthquake. J. Geodyn. 2002, 33, 401–411. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E. Electric Field that “Arrive” before the Time Derivative of the Magnetic Field prior to Major Earthquake. Phys. Rev. Lett. 2003, 91, 148501. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, P.; Sarlis, N.; Skordas, E.; Lazaridou, M. Electric pulses some minutes before earthquake occurrence. Appl. Phys. Lett. 2007, 90, 064104. [Google Scholar] [CrossRef]
- Biagi, P.F.; Maggipinto, T.; Righetti, F.; Loiacono, D.; Schiavulli, L.; Ligonzo, T.; Ermini, A.; Moldovan, I.A.; Moldovan, A.S.; Buyuksarac, A.; et al. The European VLF/LF radio network to search for earthquake precursors: Setting up and natural/man-made disturbances. Nat. Hazards Earth Syst. Sci. 2011, 11, 333–344. [Google Scholar] [CrossRef]
- Sarlis, N.; Skordas, E.; Varotsos, P.; Nagao, T.; Kamogawa, M.; Tanaka, H.; Uyeda, S. Minimum of the order parameter fluctuations of seismicity before major earthquake in Japan. Proc. Natl. Acad. Sci. USA 2013, 110, 13734–13738. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S.; Lazaridou, M.S. Seismic Electric Signals: An additionally fact showing their physical interconnection with seismicity. Tectonophysics 2013, 589, 116–125. [Google Scholar] [CrossRef]
- Stanica, D.; Stanica, D.A. Anomalous pre-seismic behaviour of the electromagnetic normalized functions related to the intermediate depth earthquakes occurred in Vrancea zone, Romania. Nat. Hazards Earth Syst. Sci. 2011, 11, 3151–3156. [Google Scholar] [CrossRef]
- Stanica, D.; Stanica, D.A. Earthquakes Precursors. In Earthquake Research and Analysis, Statistical Studies, Observations and Planning; D’Amico, S., Ed.; InTech Open Access: London, UK, 2012; pp. 79–100. ISBN 978-953-51-0134-5. [Google Scholar]
- Stanica, D.A.; Stanica, D.; Vladimirescu, N. Long-range anomalous electromagnetic effect related to M9 Great Tohoku earthquake. Earth Sci. 2015, 4, 31–38. [Google Scholar] [CrossRef]
- Uyeda, S.; Nagao, T.; Kakogawa, M. Earthquake Prediction and Precursor. In Encyclopedia of Solid Earth Geophysics; Springer: Berlin/Heidelberg, Germany, 2011; Volume 5, pp. 168–178. [Google Scholar] [CrossRef]
- Tramutoli, V.; Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C. Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas. The case of Kocaeli (Yzmit) earthquake, August 17th, 1999. Remote Sens. Environ. 2005, 96, 409–426. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid–infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 286–346. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Chunli, K.; Cevone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.V.; Boyarchuk, K.A.; Pokhmelnykh, L.A. The physical nature of the thermal anomalies observed before strong earthquakes. Phys. Chem. Earth 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Błęcki, J.; Parrot, M.; Wronowski, R. Studies of the Electromagnetic Field Variations in ELF Frequency Range Registered by DEMETER Over the Sichuan Region Prior to the 12 May 2008 Earthquake. Int. J. Remote Sens. 2010, 31, 3615–3629. [Google Scholar] [CrossRef]
- Błęcki, J.; Parrot, M.; Wronowski, R. Plasma turbulence in the ionosphere prior to earthquakes, some remarks on the DEMETER registrations. J. Asian Earth Sci. 2011, 41, 450–458. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y.; Ohta, K.; Hattori, K. The Ultra-Low-Frequency Magnetic Disturbances Associated with Earthquakes. Earthq. Sci. 2011, 24, 523–534. [Google Scholar] [CrossRef]
- Parrot, M.; Berthelier, J.J.; Blecki, J.; Brochot, J.Y.; Hobara, Y.; Lagoutte, D.; Lebreton, J.P.; Němec, F.; Onishi, T.; Pinçon, J.L.; et al. Unexpected events recorded by the ionospheric satellite DEMETER. Surv. Geophys. 2015, 36, 483–511. [Google Scholar] [CrossRef]
- Hayakawa, M. Probing the lower ionospheric perturbations associated with earthquakes by means of subionospheric VLF/LF propagation. Earthq. Sci. 2011, 24, 609–637. [Google Scholar] [CrossRef]
- Liu, J.Y. Earthquake precursors in ionospheric F-region. In Electromagnetic Phenomena Associated with Earthquakes; Hayakawa, M., Ed.; Transworld Research Network: Trivandrum, India, 2009; pp. 187–204. [Google Scholar]
- Sasai, Y. Tectonomagnetic modeling on the basis of the linear Piezomagnetic effect. Bull. Earthq. Res. Inst. Univ. Tokyo 1991, 66, 585–722. [Google Scholar]
- Fitterman, D.V. Electrokinetic and magnetic anomalies associated with dilatant regions in a layered Earth. J. Geophys. Res. 1978, 83, 5923–5928. [Google Scholar] [CrossRef]
- Fitterman, D.V. Theory of electrokinetic-magnetic anomalies in a faulted half-space. J. Geophys. Res. 1979, 84, 6031–6040. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K.; Nomicos, K.; Lazaridou, M. Earthquake prediction and electric signal. Nature 1986, 322, 120. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Nomicos, K.; Stonham, J.; Cantzos, D.; Yannakopoulos, P.; Kottou, S. Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models-A Review. J. Earth Sci. Clim. Chang. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Kotsarenko, A.; Perez Enriquez, R.; Lopez Cruz-Abeyro, J.A.; Koshevaya, S.; Grimalsky, S.; Yutsis, I.; Kremenetsky, I. ULF geomagnetic anomalies of possible seismogenic origin observed at Teoloyucan station, México, in 1999–2001: Intermediate and Short-Time Analysis. Tectonophysics 2007, 431, 249–262. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.A.; Yumoto, K. Results of ultra- Low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Morgunov, V.; Malzev, S. A multiple fracture model of pre-seismic electromagnetic phenomena. Tectonophysics 2007, 431, 61–72. [Google Scholar] [CrossRef]
- Stanica, D.A.; Stanica, D.; Błęcki, J.; Ernst, T.; Jozwiak, W.; Słomiński, J. Pre-seismic geomagnetic and ionosphere signature related to the Mw5.7 earthquake occurred in Vrancea zone on September 24, 2016. Acta Geophys. 2018, 66, 167–177. [Google Scholar] [CrossRef]
- Ramirez-Rojas, A.; Flores-Marquez, E.L.; Sarlis, N.V.; Varotsos, P.A. The Complexity Measurements Associated with the Fluctuations of the Entropy in Natural Time before the Deadly Mexico M8.2 Earthquake on 7 September 2017. Entropy 2018, 26, 477. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A.; Ramirez-Rojas, A.; Flores-Marquez, E.L. Natural time analysis: On the deadly Mexico M8.2 earthquake on & September 2017. Physica A 2018, 506, 625–634. [Google Scholar]
Time (h:mm) | BPOL | BPOL Mean | SD | BPOL FFT-BPF | BPOL (FFT-BPF) Mean | SD |
---|---|---|---|---|---|---|
0:00 | 1.09647 | 1.09591 | 0.00061 | 1.09576 | 1.09610 | 0.00039 |
0:01 | 1.09648 | 1.09579 | ||||
0:02 | 1.09651 | 1.09581 | ||||
0:03 | 1.09652 | 1.09584 | ||||
0:04 | 1.09654 | 1.09586 | ||||
0:05 | 1.09654 | 1.09589 | ||||
0:06 | 1.09653 | 1.09591 | ||||
0:07 | 1.09653 | 1.09594 | ||||
0:08 | 1.09655 | 1.09596 | ||||
0:09 | 1.09658 | 1.09599 | ||||
0:10 | 1.09662 | 1.09601 | ||||
0:11 | 1.09665 | 1.09604 | ||||
0:12 | 1.09666 | 1.09606 | ||||
0:13 | 1.09669 | 1.09609 | ||||
0:14 | 1.09670 | 1.09611 | ||||
0:15 | 1.09672 | 1.09614 | ||||
0:16 | 1.09675 | 1.09616 | ||||
0:17 | 1.09677 | 1.09619 | ||||
0:18 | 1.09681 | 1.09621 | ||||
0:19 | 1.09682 | 1.09624 | ||||
0:20 | 1.09684 | 1.09626 | ||||
0:21 | 1.09686 | 1.09628 | ||||
0:22 | 1.09688 | 1.09633 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stănică, D.A.; Stănică, D. ULF Pre-Seismic Geomagnetic Anomalous Signal Related to Mw8.1 Offshore Chiapas Earthquake, Mexico on 8 September 2017. Entropy 2019, 21, 29. https://doi.org/10.3390/e21010029
Stănică DA, Stănică D. ULF Pre-Seismic Geomagnetic Anomalous Signal Related to Mw8.1 Offshore Chiapas Earthquake, Mexico on 8 September 2017. Entropy. 2019; 21(1):29. https://doi.org/10.3390/e21010029
Chicago/Turabian StyleStănică, Dragoș Armand, and Dumitru Stănică. 2019. "ULF Pre-Seismic Geomagnetic Anomalous Signal Related to Mw8.1 Offshore Chiapas Earthquake, Mexico on 8 September 2017" Entropy 21, no. 1: 29. https://doi.org/10.3390/e21010029
APA StyleStănică, D. A., & Stănică, D. (2019). ULF Pre-Seismic Geomagnetic Anomalous Signal Related to Mw8.1 Offshore Chiapas Earthquake, Mexico on 8 September 2017. Entropy, 21(1), 29. https://doi.org/10.3390/e21010029