Boltzmann Entropy of a Newtonian Universe
Abstract
:1. The Approach via Emergent Quantum Theory
2. Newtonian Cosmology à la Madelung
2.1. The Ideal-Fluid Description
2.2. Perturbative Estimate of the Entropy
2.2.1. Wavefunction of the Matter Distribution
2.2.2. Expectation Values
2.3. Nonperturbative Estimate of the Entropy
2.3.1. Exact Eigenfunctions
2.3.2. Approximate Eigenfunctions for the Vacuum State
2.4. Concluding Remarks
3. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Adler, S. Quantum Theory as an Emergent Phenomenon; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Cabrera, D.; de Córdoba, P.F.; Isidro, J.M.; Vázquez Molina, J. Entropy, Topological Theories and Emergent Quantum Mechanics. Entropy 2017, 19, 87. [Google Scholar] [CrossRef]
- Cabrera, D.; Fernández de Córdoba, P.; Isidro, J.M. Amplitude, Phase, and Complex Analyticity. arXiv, 2017; arXiv:1702.06440. [Google Scholar]
- Elze, H.-T. Symmetry Aspects in Emergent Quantum Mechanics. J. Phys. Conf. Ser. 2009, 171, 012034. [Google Scholar] [CrossRef]
- Fernández de Córdoba, P.; Isidro, J.M.; Vázquez Molina, J. Schroedinger vs. Navier–Stokes. Entropy 2016, 18, 34. [Google Scholar] [CrossRef]
- orromé, R.G. A Theory of Emergent Quantum Mechanics. arXiv, 2014; arXiv:1402.5070. [Google Scholar]
- Khrennikov, A. Generalizations of Quantum Mechanics Induced by Classical Statistical Field Theory. Found. Phys. Lett. 2005, 18, 637. [Google Scholar] [CrossRef]
- Padmanabhan, T. General Relativity from a Thermodynamic Perspective. Gen. Relativ. Grav. 2014, 46, 1673. [Google Scholar] [CrossRef]
- Padmanabhan, T. Emergent Gravity Paradigm: Recent Progress. Mod. Phys. Lett. A 2015, 30, 1540007. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravity and/is Thermodynamics. Curr. Sci. 2015, 109, 2236. [Google Scholar] [CrossRef]
- Padmanabhan, T. The Atoms of Space, Gravity and the Cosmological Constant. Int. J. Mod. Phys. 2016, D25, 1630020. [Google Scholar] [CrossRef]
- Verlinde, E. On the Origin of Gravity and the Laws of Newton. JHEP 2011, 1104, 029. [Google Scholar] [CrossRef]
- Eddington, A. The Expanding Universe; Cambridge Science Classics Series; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Hubble, E. A Relation between Distance and Radial Velocity among Extra–Galactic Nebulae. Proc. Natl. Acad. Sci. USA 1929, 15, 168. [Google Scholar] [CrossRef] [PubMed]
- Perlmutter, S.; Aldering, G.; Deustua, S.; Fabbro, S.; Goldhaber, G.; Groom, D.E.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Nugent, P.; et al. Cosmology from Type Ia Supernovae. Bull. Am. Astron. Soc. 1997, 29, 1351. [Google Scholar]
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Cabrera, D.; Fernández de Córdoba, P.; Isidro, J.M. Boltzmann Entropy of the FLRW Universe. in preparation.
- De Witt, B. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113. [Google Scholar] [CrossRef]
- Matone, M. Equivalence Postulate and Quantum Origin of Gravitation. Found. Phys. Lett. 2002, 15, 311. [Google Scholar] [CrossRef]
- Broadbridge, P. Problems in the Quantization of Quadratic Hamiltonians. Hadron. J. 1981, 4, 899. [Google Scholar]
- Broadbridge, P.; Zulkowski, P. Dark Energy States from Quantization of Boson Fields in a Universe with Unstable Modes. Rep. Math. Phys. 2006, 57, 27. [Google Scholar] [CrossRef]
- Martínez-Merino, A.; Obregón, O.; Ryan, M. Newtonian Black Holes: Particle Production, “Hawking” Temperature, Entropies and Entropy Field Equations. arXiv, 2016; arXiv:1611.09654. [Google Scholar]
- Matone, M. ‘Thermodynamique Cachée des Particules’ and the Quantum Potential. Ann. Fond. Broglie 2012, 37, 177. [Google Scholar]
- Planck Collaboration. Planck 2015 Results. XIII. Cosmological Parameters. arXiv, 2015; arXiv:1502.01589. [Google Scholar]
- Bousso, R. The Holographic Principle. Rev. Mod. Phys. 2002, 74, 825. [Google Scholar] [CrossRef]
- Lebedev, N. Special Functions and their Applications; Dover Publications: New York, NY, USA, 1972. [Google Scholar]
- Egan, C.; Lineweaver, C. A Larger Estimate of the Entropy of the Universe. Astroph. J. 2010, 710, 1825. [Google Scholar] [CrossRef]
- Frampton, P.; Hsu, S.; Kephart, T.; Reeb, D. What is the Entropy of the Universe? Class. Quant. Grav. 2009, 26, 145005. [Google Scholar] [CrossRef]
- Penrose, R. The Road to Reality; Jonathan Cape: London, UK, 2004. [Google Scholar]
- Penrose, R. Black Holes, Quantum Theory and Cosmology. J. Phys. Conf. Ser. 2009, 174, 012001. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabrera, D.; Fernández de Córdoba, P.; Isidro, J.M. Boltzmann Entropy of a Newtonian Universe. Entropy 2017, 19, 212. https://doi.org/10.3390/e19050212
Cabrera D, Fernández de Córdoba P, Isidro JM. Boltzmann Entropy of a Newtonian Universe. Entropy. 2017; 19(5):212. https://doi.org/10.3390/e19050212
Chicago/Turabian StyleCabrera, D., Pedro Fernández de Córdoba, and J.M. Isidro. 2017. "Boltzmann Entropy of a Newtonian Universe" Entropy 19, no. 5: 212. https://doi.org/10.3390/e19050212
APA StyleCabrera, D., Fernández de Córdoba, P., & Isidro, J. M. (2017). Boltzmann Entropy of a Newtonian Universe. Entropy, 19(5), 212. https://doi.org/10.3390/e19050212