The κ-Generalizations of Stirling Approximation and Multinominal Coefficients
Abstract
:1. Introduction
2. κ-Stirling Approximation
3. Introducing a New κ-Product
4. Another κ-Generalization of the Factorial
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Suyari, H.; Tsukada, M. Law of error in Tsallis statistics. IEEE Trans. Inform. Theory 2005, 51, 753–757. [Google Scholar] [CrossRef]
- Suyari, H. q-Stirling’s formula in Tsallis statistics. 2004; arXiv: cond-mat/0401541. [Google Scholar]
- Suyari, H. Mathematical structure derived from the q-multinomial coefficient in Tsallis statistics. Physica A 2006, 368, 63–82. [Google Scholar] [CrossRef]
- Nivanen, L.; Le Mehaute, A.; Wang, Q.A. Generalized algebra within a nonextensive statistics. Rep. Math. Phys. 2003, 52, 437–444. [Google Scholar] [CrossRef]
- Borges, E.P. A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A 2004, 340, 95–101. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Physica A 1998, 261, 534–554. [Google Scholar] [CrossRef]
- Tsallis, C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar]
- Niven, R.; Suyari, H. Combinatorial basis and non-asymptotic form of the Tsallis entropy function. Eur. Phys. J. B 2008, 61, 75–82. [Google Scholar] [CrossRef]
- Kaniadakis, G.; Scarfone, A.M. A new one-parameter deformation of the exponential function. Physica A 2002, 305, 69–75. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical mechanics in the context of special relativity. Phys. Rev. E 2002, 66, 056125. [Google Scholar] [CrossRef] [PubMed]
- Kaniadakis, G. Statistical mechanics in the context of special relativity II. Phys. Rev. E 2005, 72, 036108. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Suyari, H. κ-generalization of Gauss’ law of error. Phys. Lett. A 2006, 348, 89–93. [Google Scholar] [CrossRef]
- Scarfone, A.M.; Wada, T. Canonical partition function for anomalous systems described by the κ-entropy. Prog. Theor. Phys. Suppl. 2006, 162, 45–52. [Google Scholar] [CrossRef]
- Kaniadakis, G. Theoretical foundations and mathematical formalism of the power-law tailed statistical distributions. Entropy 2013, 15, 3983–4010. [Google Scholar] [CrossRef]
- Díaz, R.; Pariguan, E. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 2007, 15, 179–192. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wada, T.; Suyari, H. The κ-Generalizations of Stirling Approximation and Multinominal Coefficients. Entropy 2013, 15, 5144-5153. https://doi.org/10.3390/e15125144
Wada T, Suyari H. The κ-Generalizations of Stirling Approximation and Multinominal Coefficients. Entropy. 2013; 15(12):5144-5153. https://doi.org/10.3390/e15125144
Chicago/Turabian StyleWada, Tatsuaki, and Hiroki Suyari. 2013. "The κ-Generalizations of Stirling Approximation and Multinominal Coefficients" Entropy 15, no. 12: 5144-5153. https://doi.org/10.3390/e15125144
APA StyleWada, T., & Suyari, H. (2013). The κ-Generalizations of Stirling Approximation and Multinominal Coefficients. Entropy, 15(12), 5144-5153. https://doi.org/10.3390/e15125144