A Comprehensive Exploration of 6G Wireless Communication Technologies
Abstract
:1. Introduction
- The Evolution and Trends of 6G Network Architecture: This paper delineates the anticipated evolution of 6G network architecture, emphasizing design principles like superconvergence, non-IP-based networking protocols, and a 360-degree cybersecurity and privacy-by-engineering design. It envisions a future where the integration of diverse technologies, including quantum communications and artificial intelligence, underpins the fabric of 6G networks.
- Crafting the Future: Unveiling 6G’s Pinnacle Features and Delicate Trade-offs: A detailed examination of the key features unique to 6G, such as high security, secrecy, privacy, affordability, and intelligence, is provided. We also discuss the trade-offs required to achieve these ambitious goals, balancing spectrum efficiency with energy consumption and customization with security.
- The Performance Parameters and Application Scenarios of 6G Networks: This section outlines the technical requirements for 6G networks to support emerging application scenarios. It discusses the enhancement of connectivity density, the expansion of coverage to ubiquitous global service, and the integration of sensing and intelligence at an unprecedented scale.
- Key 6G Technologies: The paper introduces groundbreaking technologies essential for 6G, covering new spectrum opportunities, enhanced wireless interfaces, and advancements in communication paradigms. It highlights how technologies like terahertz communication, optical wireless technology, and dynamic spectrum management will drive 6G innovations.
- Sixth-Generation (6G) Testbeds and Platforms: An overview of existing 6G testbeds is provided, shedding light on the practical aspects of implementing and testing 6G technologies. This section underscores the importance of real-world experimentation in the evolution of 6G standards and applications.
- Technical Challenges for 6G Development: The paper identifies and discusses the myriad technical hurdles that must be overcome to realize the vision of 6G. From the propagation challenges of terahertz waves to the integration of AI in network operations, it provides a roadmap for addressing these complex issues.
- Critical Non-Technical Considerations for 6G Development: The paper extends its analysis to encompass non-technical obstacles and factors crucial for the effective implementation of 6G. This includes considerations related to regulations, societal impact, and market dynamics that are essential for the technology’s success.
2. The Evolution and Trends of 6G Network Architecture
2.1. The Design Fundamentals of 6G Networks
2.1.1. Superconvergence
2.1.2. Non-IP-Based Networking Protocols
2.1.3. Information-Centric and Intent-Based Networks (ICNs)
2.1.4. 360-Cybersecurity and Privacy-by-Engineering Design
2.1.5. Future-Proofing Emerging Technologies
2.2. Opportunities for Fundamental Change
2.2.1. Removal of/Reduction in the Transport Network
2.2.2. Flattened Compute–Storage–Transport
2.2.3. Native Open Source Support
2.2.4. AI-Native Design Enabling Human–Machine Teaming
2.2.5. Human-Centric Networks
3. Crafting the Future: Unveiling 6G’s Pinnacle Features, and Delicate Trade-Offs
3.1. Key Features of 6G
3.1.1. Enhanced Security, Confidentiality, and Privacy
3.1.2. High Affordability and Full Customization
3.1.3. Reduced Energy Usage and Extended Battery Duration
3.1.4. High Intelligence
3.1.5. Extremely Large Bandwidth
3.2. Trade-Offs and Solutions
3.2.1. Privacy Versus Intelligence
3.2.2. Affordability Versus Intelligence
3.2.3. Customization Versus Intelligence
3.2.4. Security Versus Spectral Effectiveness
3.2.5. Energy Efficiency Versus Spectral Efficiency
4. The Performance Parameters and Application Scenarios of 6G Networks
4.1. Technical Requirements
- Peak data rate: Aiming for a peak data rate of no less than 1 Tb/s [23] represents a substantial advancement, surpassing the capabilities of 5G by a factor of 100. In specific scenarios like terahertz (THz) wireless backhaul and fronthaul (x-haul), as highlighted in [23], there is an anticipation that the peak data rate could escalate to an impressive 10 Tb/s.
- User-experienced data rate: The 5th percentile point in the user throughput cumulative distribution function represents the idea of a user-experienced data rate. Simply put, this represents the minimum data rate that a user can expect to receive at any given time or location with a 95% probability. This metric becomes particularly significant when evaluating perceived performance, especially at the periphery of cellular coverage. It serves as an indicator of network quality, influenced by factors like site density, architectural design, and inter-cell optimization.In the context of 5G implementation in highly populated metropolitan areas, 50 Mbps for uplink and 100 Mbps for downlink are the planned user-perceived rates. Considerable progress is anticipated toward 6G’s potential, with a tenfold improvement in speed over 5G—1 Gbps or faster—as the target. Moreover, 6G is poised to deliver user-experienced data rates reaching up to 10 Gb/s in specific scenarios, such as indoor hotspots. This advancement signifies a considerable leap in data transfer speeds and holds promise for enhanced connectivity experiences.
- 3.
- Latency: The time it takes for information to travel, known as latency, varies depending on the application. However, the minimum latency is currently 25 s, which is a significant improvement compared to 5G (40 times better). Latency is divided into two types: user plane and control plane latency [25]. The latency of the user plane refers to the time it takes for a packet to be sent from the source in a wireless network to its destination under the assumption that a mobile station is active. The minimum acceptable user plane latency in the context of 5G wireless technology is 4 ms for enhanced mobile broadband (eMBB) and 1 ms for ultra-reliable low latency communications (uRLLC). The objective is to reduce latency to either 100 ms or 10 ms. Control plane latency refers to the duration it takes for a control plane to transition from an energy-efficient state, such as idle, to one where continuous data transmission commences, such as active. In 5G, the control plane has a minimum delay of 10 ms, which is expected to see significant enhancement in 6G. End-to-end (E2E) delay holds greater significance than over-the-air latency, serving as a comprehensive metric in 6G.
- 4.
- Mobility: The term `mobility’ describes the maximum speed a mobile station may reach while meeting the network’s acceptable quality of experience (QoE) requirements. The highest speed that 5G can enable for deployment scenarios involving high-speed trains is 500 km/h. However, 6G aims at a maximum speed of 1000 km/h in the context of systems used by commercial airlines [25].
- 5.
- Connection density: In the realm of massive machine-type communication (mMTC), this serves as a crucial performance metric for assessment. In 5G, given constraints on radio resources, the minimum count of devices with a more lenient quality of service (QoS) per square kilometer (km2) is presently established at 106. There are plans to enhance this metric further, aiming for a tenfold improvement to reach 107 devices per km2 in the future [25].
- 6.
- Network energy efficiency: Ensuring energy efficiency is crucial for cost-effective mobile networks and minimizing carbon emissions in the realm of green communication. This aspect plays a critical role in societal and economic considerations. Despite the significant improvement in energy efficiency per bit compared to previous generations, the early deployment of 5G networks has faced criticism for its high overall energy consumption. In the upcoming 6G networks, the goal is to increase KPI performance 10 to 100 times than 5G. The goal is to reduce the power consumption in communication while improving energy efficiency per bit [25].
- 7.
- Spectrum efficiency: This is an important KPI for measuring improvements in radio communication systems. The standard for peak bandwidth efficiency in 5G is set at 30 bits per second per hertz (bps/Hz) in the downlink and 15 bps/Hz in the upload. For example, using real-world data to guide the development of new 6G radio technologies could lead to three times better frequency efficiency than the 5G infrastructure [25].
- 8.
- Area traffic capacity: This is a metric for assessing a network’s aggregate mobile traffic capacity within a defined area, considering elements such as available bandwidth, spectrum efficiency, and network densification. In 5G, the baseline criterion for area traffic capacity is established at 10 megabits per second per square meter (Mbps/(m2)). There are expectations that in certain deployment scenarios, such as indoor hotspots, this capacity could reach up to 1 gigabit per second per square meter (Gbps/(m2) [25].
- 9.
- Delay jitter: This refers to the variability in the time it takes for packets to reach their destination, leading to fluctuations in transmission delay. In 5G systems, the delay jitter is typically around 1 ms [26], whereas in 6G systems, it has been reduced to as low as 1 s, achieving an improvement of 1000 times.
- 10.
- Reliability: This denotes the capacity to transmit a specified volume of traffic within a predetermined time frame with a high probability of success, particularly crucial in URLLC scenarios. In 5G networks, reliability is measured by a success probability spanning from 1 to 10−5 when sending a 32-byte data packet within 1 ms, factoring in the channel quality at the coverage edge in an urban macro environment deployment scenario. Expectations for the next-generation system include a significant improvement of at least two orders of magnitude, reaching a success probability of 1−10−7 or 99.99% [25].
- 11.
- Positioning: This metric, offered by the 5G positioning service, surpasses 10 m. There is a rising demand for increased precision in positioning, especially in diverse vertical and industrial applications, notably in indoor environments where satellite-based positioning systems may lack adequate coverage. The integration of THz radio stations, renowned for their capability in high-precision positioning, is projected to elevate the accuracy supported by 6G networks to the centimeter level [25].
- 12.
- Coverage: In the context of 5G technology, coverage refers to the integrity of radio signal reception within a single base station’s service area. The scope of this service area is gauged by the coupling loss metric, which accounts for the aggregate long-term channel loss between a terminal and a base station, factoring in elements like antenna gains, the attenuation of signal strength over distance, and shadowing from obstacles. As we transition to 6G networks, the concept of coverage is anticipated to expand considerably. This development is expected to achieve a level of coverage that is universally pervasive, transcending terrestrial-only networks to incorporate a three-dimensional (3D) coverage model that integrates terrestrial, satellite, and aerial network systems.
- 13.
- Cost efficiency: This metric describes the relationship between the value obtained from a user’s data usage and the cost of the data traffic involved. In 5G systems, the cost efficiency is approximately 10 Gb/USD [27], whereas in 6G systems, it is expected to reach 500 Gb/USD, representing a 50-fold improvement.
- 14.
- Battery life: This indicates the duration an IoT device’s battery can last before needing replacement or recharging. In 5G systems, the typical battery life of IoT devices is around 10 years [28], whereas in 6G systems, it is projected to extend to 20 years, representing a twofold improvement.
- 15.
- Sensing: This refers to the ability to capture and process visual information with high precision and detail. In 5G systems, the sensing resolution is typically around 1 m [29], whereas in 6G systems, it is expected to improve to 1 millimeter, achieving a 1000-fold enhancement in precision.
- 16.
- Security capacity: This refers to the transmission rate of reliable data while minimizing the risk of interception by unauthorized parties. In 5G systems, security capacity is considered low, whereas in 6G systems, it is anticipated to be significantly higher, ensuring enhanced protection and reliability of transmitted data. Indicators related to this metric have been discussed in [27,30,31,32,33,34].
- 17.
- Intelligence level This represents the sophistication of information processing and decision-making methods. In 5G systems, the intelligence level is relatively low, whereas in 6G systems, it is expected to be high, enabling more advanced and autonomous operations across various applications. As AI continues to advance, the intelligence level of the 6G communication system is anticipated to see significant improvements, as discussed in [32,33].
4.2. Application Scenarios
4.2.1. Human Digital Twin
4.2.2. XR (Extended Reality) Based on Holographic Communication
4.2.3. New Smart City
4.2.4. Emergency Rescue Communication
4.2.5. High-Speed Internet Access in the Air
4.2.6. Smart Factory Plus
4.2.7. Cyber Robots and Autonomous Systems
4.2.8. Wireless Tactile Network
5. Key 6G Technologies
5.1. New Spectrum
5.1.1. Millimeter Wave
5.1.2. Terahertz (THz) Technology for 6G Communication Systems
5.1.3. Optical Wireless Technology
5.1.4. Dynamic Spectrum Management (DSM)
5.2. Improved Wireless Interface
5.2.1. New Modulation
5.2.2. New Channel Coding Technologies
5.2.3. Revolutionizing Access: NOMA
5.2.4. Ultra-Massive MIMO: Enhancing 6G Network Capabilities
5.2.5. Coordinated Multipoint and Cell-Free (CoMP)
5.2.6. In-Band Full-Duplex (IBFD) Technology: Unlocking Enhanced Spectrum Efficiency in 6G
5.2.7. Orbital Angular Momentum (OAM)
5.2.8. Intelligent Reflecting Surface (IRS)
5.2.9. Holographic Radio for Intelligent EM Space in 6G
5.3. Other Perspectives
5.3.1. AI Integration in 6G Networks
5.3.2. Integration of Perception and Communication Networks in 6G: The Role of Integrated Sensing and Communication (ISAC)
5.3.3. Blockchain Technology in 6G Networks
5.3.4. Semantic Communication in 6G Networks
5.3.5. Energy-Neutral Devices and Backscattering Communication in 6G Networks
5.3.6. Free-Space Optics Fronthaul/Backhaul Network
5.3.7. Three-Dimensional Networking
5.3.8. Quantum Communications
5.3.9. Unmanned Aerial Vehicles (UAVs)
5.3.10. Cell-Free Communications
5.3.11. Integration of Wireless Information and Energy Transfer (WIET)
5.3.12. Integration of Sensing and Communication
5.3.13. Dynamic Network Slicing
5.3.14. Proactive Caching
5.3.15. Edge Computing
6. Sixth-Generation (6G) Testbeds and Platforms
6.1. Experimental Platforms for Sixth-Generation (6G) Communication Channels
6.1.1. Widespread Simulator for 6G Communication Channels
6.1.2. Channel Sounders
6.2. Testbeds for 6G Technologies
6.2.1. mmWave Testbeds
6.2.2. THz Testbeds
6.2.3. RIS Testbeds
6.2.4. Integrated Sensing and Communication (ISAC) Testbeds
6.2.5. Cell-Free Systems Testbeds
6.2.6. Optical Wireless Communication (OWC) Testbeds
7. Technical Considerations for Implementing 6G Technology
7.1. Propagation of Electromagnetic Waves at THz Frequencies
- High Path Loss: THz frequencies are highly susceptible to free-space path loss and atmospheric absorption, particularly by water vapor and oxygen molecules. This limits their effective range, often requiring line-of-sight (LOS) propagation [259].
- Limited Diffraction: The reduced wavelength of THz waves results in poor diffraction, making them less capable of bending around obstacles. This increases the need for direct LOS paths or reflection-enhancing technologies [260].
- High Data Rates: Despite these challenges, the large bandwidth available in the THz spectrum supports extremely high data rates, making it ideal for applications such as holographic communications and ultra-high-definition video streaming [52].
7.2. Dimensions of a Cell in 6G Networks
- Smaller Cells: Due to limited propagation distances, 6G networks will rely on smaller cells (pico- and femtocells) to ensure adequate coverage and reduce signal attenuation.
- Three-Dimensional (3D) Network Design: Unlike traditional 2D cellular networks, 6G will integrate terrestrial, aerial, and satellite communication layers to provide seamless global coverage. This three-dimensional architecture ensures connectivity in rural and remote areas while supporting high mobility scenarios like in-flight internet and smart transportation systems [261].
7.3. Intelligent Reflecting Surfaces (IRS) and “Mirrors”
- Reconfigurable Reflectors: IRSs consist of passive or semi-passive elements that can dynamically adjust their reflective properties to redirect and focus THz signals toward users. This technology is critical for maintaining connectivity in environments with obstructions or when LOS paths are unavailable [262].
- Beam Steering and Power Efficiency: By controlling the phase and amplitude of reflected waves, IRSs can steer beams and improve power efficiency, enabling better energy usage in densely populated urban areas [263].
- Enhancing Spectral Efficiency: IRS technology improves spectral efficiency by dynamically optimizing channel conditions, reducing interference, and boosting overall throughput [263].
8. Technical Challenges for 6G Development
8.1. Terahertz Frequency
8.1.1. Significant Transmission and Absorption by the Atmosphere at Terahertz Frequencies
8.1.2. Coverage and Directional Communication
8.1.3. Broad-Scale Fading Characteristics
8.1.4. Rapid Variations in the Channel and Sporadic Connectivity
8.1.5. Processing Power Consumption
8.1.6. Spectrum Regulation
8.2. Implications of Expanding Carrier Bandwidths
8.3. RF Transceiver Challenges and Opportunities
8.4. Power Supply Issue
8.5. Dynamic Network Integration Challenge
8.6. Challenges in Achieving Tactile Internet
8.7. Network Security Challenges
8.8. Difficulties in Managing Resources for Three-Dimensional Networking
8.9. Device Capabilities in 6G
8.10. Spectrum and Interference Administration
9. Critical Non-Technical Considerations for 6G Development
9.1. Dependency on Basic Sciences
9.2. Dependency on Upstream Industries
9.3. Demand-Oriented Research Roadmap
9.4. Business Model and Commercialization
9.5. Health and Psychological Concerns
9.6. Social Factors in Worldwide Connectivity
10. Biological Effects of 6G
10.1. Thermal Effects
10.2. Non-Thermal Effects
10.3. Neurological Impacts
10.4. Reactive Oxygen Species (ROS) Production
10.5. Impact on Reproductive Health
10.6. Regulatory Perspectives
11. Ethical AI Governance and Integrated Space–Air–Ground–Sea Networks in 6G
11.1. Ethical AI Governance in 6G
11.2. The 6G Architecture and Space–Air–Ground–Sea Integrated Networks
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef]
- David, K.; Berndt, H. 6G vision and requirements: Is there any need for beyond 5G? IEEE Veh. Technol. Mag. 2018, 13, 72–80. [Google Scholar] [CrossRef]
- Yastrebova, A.; Kirichek, R.; Koucheryavy, Y.; Borodin, A.; Koucheryavy, A. Future networks 2030: Architecture & requirements. In Proceedings of the 2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Moscow, Russia, 5–9 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [Google Scholar]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.; Zhang, J.C. What will 5G be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Patzold, M. 5G is coming around the corner [mobile radio]. IEEE Veh. Technol. Mag. 2019, 14, 4–10. [Google Scholar] [CrossRef]
- Rommel, S.; Raddo, T.R.; Monroy, I.T. Data center connectivity by 6G wireless systems. In Proceedings of the 2018 Photonics in Switching and Computing (PSC), Limassol, Cyprus, 19–21 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–3. [Google Scholar]
- Kabir, H.D.; Khosravi, A.; Mondal, S.K.; Rahman, M.; Nahavandi, S.; Buyya, R. Uncertainty-aware decisions in cloud computing: Foundations and future directions. ACM Comput. Surv. 2021, 54, 1–30. [Google Scholar] [CrossRef]
- Mondal, S.K.; Wu, X.; Kabir, H.M.D.; Dai, H.N.; Ni, K.; Yuan, H.; Wang, T. Toward optimal load prediction and customizable autoscaling scheme for kubernetes. Mathematics 2023, 11, 2675. [Google Scholar] [CrossRef]
- Fang, C.; Yao, H.; Wang, Z.; Wu, W.; Jin, X.; Yu, F.R. A survey of mobile information-centric networking: Research issues and challenges. IEEE Commun. Surv. Tutor. 2018, 20, 2353–2371. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjöland, H.; Tufvesson, F. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. Post-Quantum Cryptography Standardization. 2022. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization (accessed on 24 November 2024).
- Kabir, H.D.; Abdar, M.; Khosravi, A.; Jalali, S.M.J.; Atiya, A.F.; Nahavandi, S.; Srinivasan, D. Spinalnet: Deep neural network with gradual input. IEEE Trans. Artif. Intell. 2022, 4, 1165–1177. [Google Scholar] [CrossRef]
- Kabir, H.D.; Khanam, S.; Khozeimeh, F.; Khosravi, A.; Mondal, S.K.; Nahavandi, S.; Acharya, U.R. Aleatory-aware deep uncertainty quantification for transfer learning. Comput. Biol. Med. 2022, 143, 105246. [Google Scholar] [CrossRef]
- Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Magazzeni, D.; Smith, D. Towards explainable AI planning as a service. arXiv 2019, arXiv:1908.05059. [Google Scholar]
- Kabir, H. Reduction of class activation uncertainty with background information. arXiv 2023, arXiv:2305.03238. [Google Scholar]
- Chen, L.; Chen, L.; Jordan, S.; Liu, Y.K.; Moody, D.; Peralta, R.; Perlner, R.A.; Smith-Tone, D. Report on Post-Quantum Cryptography; US Department of Commerce, National Institute of Standards and Technology: Washington, DC, USA, 2016; Volume 12.
- Van Huynh, N.; Hoang, D.T.; Lu, X.; Niyato, D.; Wang, P.; Kim, D.I. Ambient backscatter communications: A contemporary survey. IEEE Commun. Surv. Tutor. 2018, 20, 2889–2922. [Google Scholar] [CrossRef]
- Kabir, H.D.; Mondal, S.K.; Alam, S.B.; Acharya, U.R. Transfer learning with spinally shared layers. Appl. Soft Comput. 2024, 163, 111908. [Google Scholar] [CrossRef]
- Kabir, H.D.; Mondal, S.K.; Khanam, S.; Khosravi, A.; Rahman, S.; Qazani, M.R.C.; Alizadehsani, R.; Asadi, H.; Mohamed, S.; Nahavandi, S.; et al. Uncertainty aware neural network from similarity and sensitivity. Appl. Soft Comput. 2023, 149, 111027. [Google Scholar] [CrossRef]
- Mao, Q.; Hu, F.; Hao, Q. Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 2595–2621. [Google Scholar] [CrossRef]
- Elayan, H.; Amin, O.; Shihada, B.; Shubair, R.M.; Alouini, M.S. Terahertz band: The last piece of RF spectrum puzzle for communication systems. IEEE Open J. Commun. Soc. 2019, 1, 1–32. [Google Scholar] [CrossRef]
- ITU-R. Minimum requirements related to technical performance for IMT-2020 radio interface(s). Report 2017, 2410, 2410-2017. [Google Scholar]
- Boulogeorgos, A.A.A.; Alexiou, A.; Merkle, T.; Schubert, C.; Elschner, R.; Katsiotis, A.; Stavrianos, P.; Kritharidis, D.; Chartsias, P.K.; Kokkoniemi, J.; et al. Terahertz technologies to deliver optical network quality of experience in wireless systems beyond 5G. IEEE Commun. Mag. 2018, 56, 144–151. [Google Scholar] [CrossRef]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the road to 6G: Visions, requirements, key technologies and testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D. The road towards 6G: A comprehensive survey. IEEE Open J. Commun. Soc. 2021, 2, 334–366. [Google Scholar] [CrossRef]
- Nasrallah, A.; Thyagaturu, A.S.; Alharbi, Z.; Wang, C.; Shao, X.; Reisslein, M.; ElBakoury, H. Ultra-low latency (ULL) networks: The IEEE TSN and IETF DetNet standards and related 5G ULL research. IEEE Commun. Surv. Tutor. 2018, 21, 88–145. [Google Scholar] [CrossRef]
- VIVO. White Paper on 6G Vision, Requirement and Challenges. White Paper. 2020. Available online: http://www.vivo.com.cn/6g/CH/vivo6gvision.pdf (accessed on 10 September 2024). (In Chinese).
- Zhong, M.; Yang, Y.; Yao, H.; Fu, X.; Dobre, O.A.; Postolache, O. 5G and IoT: Towards a new era of communications and measurements. IEEE Instrum. Meas. Mag. 2019, 22, 18–26. [Google Scholar] [CrossRef]
- Barneto, C.B.; Turunen, M.; Liyanaarachchi, S.D.; Anttila, L.; Brihuega, A.; Riihonen, T.; Valkama, M. High-accuracy radio sensing in 5G new radio networks: Prospects and self-interference challenge. In Proceedings of the 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 3–6 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1159–1163. [Google Scholar]
- 6G Flagship. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence. White Paper. 2019. Available online: https://www.mobilewirelesstesting.com/wp-content/uploads/2019/10/5G-evolution-on-the-path-to-6G-wp-en-3608-3326-52-v0100.pdf (accessed on 10 September 2024).
- NTT Docomo Inc. 5G Evolution and 6G. White Paper. 2020. Available online: https://www.nttdocomo.co.jp/english/binary/pdf/corporate/technology/whitepaper_6g/DOCOMO_6G_White_PaperEN_20200124.pdf (accessed on 10 September 2024).
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wirel. Commun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- You, X.; Wang, C.X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 1–74. [Google Scholar] [CrossRef]
- Bhat, J.R.; Alqahtani, S.A. 6G ecosystem: Current status and future perspective. IEEE Access 2021, 9, 43134–43167. [Google Scholar] [CrossRef]
- Alablani, I.A.; Arafah, M.A. An adaptive cell selection scheme for 5G heterogeneous ultra-dense networks. IEEE Access 2021, 9, 64224–64240. [Google Scholar] [CrossRef]
- Sun, W.; Wang, L.; Liu, J.; Kato, N.; Zhang, Y. Movement aware CoMP handover in heterogeneous ultra-dense networks. IEEE Trans. Commun. 2020, 69, 340–352. [Google Scholar] [CrossRef]
- Sharma, S.K.; Wang, X. Toward massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine learning-assisted solutions. IEEE Commun. Surv. Tutor. 2019, 22, 426–471. [Google Scholar] [CrossRef]
- Series, M. IMT Vision–Framework and overall objectives of the future development of IMT for 2020 and beyond. Recomm. ITU 2015, 2083, 1–21. [Google Scholar]
- Wu, W. Survey on the development of space-integrated-ground information network. Space-Integr.-Ground Inf. Netw. 2020, 1, 1–16. [Google Scholar]
- Akyildiz, I.F.; Kak, A.; Nie, S. 6G and beyond: The future of wireless communications systems. IEEE Access 2020, 8, 133995–134030. [Google Scholar] [CrossRef]
- Samsung Research. 6G: The Next hyper Connected Experience for All; Samsung: Suwon-si, Republic of Korea, 2020. [Google Scholar]
- Lu, Y.; Zheng, X. 6G: A survey on technologies, scenarios, challenges, and the related issues. J. Ind. Inf. Integr. 2020, 19, 100158. [Google Scholar] [CrossRef]
- Wang, C.; Yu, H.; Li, X.; Ma, F.; Wang, X.; Taleb, T.; Leung, V.C. Dependency-Aware Microservice Deployment for Edge Computing: A Deep Reinforcement Learning Approach with Network Representation. IEEE Trans. Mob. Comput. 2024, 23, 14737–14753. [Google Scholar] [CrossRef]
- Wang, C.; Jia, B.; Yu, H.; Chen, L.; Cheng, K.; Wang, X. Attention-aided Federated Learning for Dependency-Aware Collaborative Task Allocation in Edge-Assisted Smart Grid Scenarios. In Proceedings of the 2022 IEEE/CIC International Conference on Communications in China (ICCC), Foshan, China, 11–13 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 856–861. [Google Scholar]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter wave communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 1616–1653. [Google Scholar] [CrossRef]
- Ippolito, L.J. Radio propagation for space communications systems. Proc. IEEE 1981, 69, 697–727. [Google Scholar] [CrossRef]
- Ajorloo, H.; Manzuri-Shalmani, M.T. Modeling beacon period length of the UWB and 60-GHz mmWave WPANs based on ECMA-368 and ECMA-387 standards. IEEE Trans. Mob. Comput. 2012, 12, 1201–1213. [Google Scholar] [CrossRef]
- Nitsche, T.; Cordeiro, C.; Flores, A.B.; Knightly, E.W.; Perahia, E.; Widmer, J.C. IEEE 802.11 ad: Directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi. IEEE Commun. Mag. 2014, 52, 132–141. [Google Scholar] [CrossRef]
- Han, B.; Wang, L.; Schotten, H.D. A 3D human body blockage model for outdoor millimeter-wave cellular communication. Phys. Commun. 2017, 25, 502–510. [Google Scholar] [CrossRef]
- Al-samman, A.M.; Azmi, M.H.; Rahman, T.A. A survey of millimeter wave (mm-Wave) communications for 5G: Channel measurement below and above 6 GHz. In Recent Trends in Data Science and Soft Computing, Proceedings of the 3rd International Conference of Reliable Information and Communication Technology (IRICT 2018), Kuala Lumpur, Malaysia, 23–24 June 2018; Springer: Berlin/Heidelberg, Germany, 2019; pp. 451–463. [Google Scholar]
- Huq, K.M.S.; Busari, S.A.; Rodriguez, J.; Frascolla, V.; Bazzi, W.; Sicker, D.C. Terahertz-enabled wireless system for beyond-5G ultra-fast networks: A brief survey. IEEE Netw. 2019, 33, 89–95. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Xing, Y.; Kanhere, O.; Ju, S.; Madanayake, A.; Mandal, S.; Alkhateeb, A.; Trichopoulos, G.C. Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond. IEEE Access 2019, 7, 78729–78757. [Google Scholar] [CrossRef]
- Kabir, H.M.D. A frequency multiplier using three ambipolar graphene transistors. Microelectron. J. 2017, 70, 12–15. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, X.; Zhang, B.; Zhang, Y.; Niu, Z.; Kuang, N.; Chen, W.; Li, L.; Li, S. A survey on terahertz communications. China Commun. 2019, 16, 1–35. [Google Scholar] [CrossRef]
- Hadi Sarieddeen, N.S.; Al-Naffouri, T.Y.; Alouini, M.S. Next Generation Terahertz Communications: A Rendezvous of Sensing, Imaging, and Localization. IEEE Commun. Mag. 2020, 58, 69–75. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Hua, B.; Lei, M.; Cai, Y.; Zou, Y.; Tian, L.; Li, A.; Huang, Y.; Yu, J.; et al. 6G oriented 100 GbE real-time demonstration of fiber-THz-fiber seamless communication enabled by photonics. In Proceedings of the 2022 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 6–10 March 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–3. [Google Scholar]
- Bariah, L.; Mohjazi, L.; Muhaidat, S.; Sofotasios, P.C.; Kurt, G.K.; Yanikomeroglu, H.; Dobre, O.A. A prospective look: Key enabling technologies, applications and open research topics in 6G networks. IEEE Access 2020, 8, 174792–174820. [Google Scholar] [CrossRef]
- Giordani, M.; Polese, M.; Mezzavilla, M.; Rangan, S.; Zorzi, M. Toward 6G networks: Use cases and technologies. IEEE Commun. Mag. 2020, 58, 55–61. [Google Scholar] [CrossRef]
- Tavakkolnia, I.; Jagadamma, L.K.; Bian, R.; Manousiadis, P.P.; Videv, S.; Turnbull, G.A.; Samuel, I.D.; Haas, H. Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications. Light Sci. Appl. 2021, 10, 41. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, J.; Kim, J.Y.; Huang, W.; Kanhere, S.S.; Jha, S.K.; Hu, W. The design, implementation, and deployment of a smart lighting system for smart buildings. IEEE Internet Things J. 2019, 6, 7266–7281. [Google Scholar] [CrossRef]
- Perera, A.; Katz, M.; Godaliyadda, R.; Häkkinen, J.; Strömmer, E. Light-based Internet of Things: Implementation of an optically connected energy-autonomous node. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7. [Google Scholar]
- Padhi, S.; Subramanyam, R. Uncertainty Level-Based Algorithms by Managing Renewable Energy for Geo-Distributed Datacenters. Clust. Comput. 2024, 27, 5337–5354. [Google Scholar] [CrossRef]
- He, X.; Xie, E.; Islim, M.S.; Purwita, A.A.; McKendry, J.J.; Gu, E.; Haas, H.; Dawson, M.D. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm. Photonics Res. 2019, 7, B41–B47. [Google Scholar] [CrossRef]
- Soltani, M.D.; Sarbazi, E.; Bamiedakis, N.; De Souza, P.; Kazemi, H.; Elmirghani, J.M.; White, I.H.; Penty, R.V.; Haas, H.; Safari, M. Safety analysis for laser-based optical wireless communications: A tutorial. Proc. IEEE 2022, 110, 1045–1072. [Google Scholar] [CrossRef]
- Hamza, A.S.; Deogun, J.S.; Alexander, D.R. Classification framework for free space optical communication links and systems. IEEE Commun. Surv. Tutor. 2018, 21, 1346–1382. [Google Scholar] [CrossRef]
- Kazemi, H.; Sarbazi, E.; Soltani, M.D.; Safari, M.; Haas, H. A Tb/s indoor optical wireless backhaul system using VCSEL arrays. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Yoshida, K.; Manousiadis, P.P.; Bian, R.; Chen, Z.; Murawski, C.; Gather, M.C.; Haas, H.; Turnbull, G.A.; Samuel, I.D. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 2020, 11, 1171. [Google Scholar] [CrossRef] [PubMed]
- Matthews, W.; Ahmed, Z.; Ali, W.; Collins, S. A 3.45 Gigabits/s SiPM-based OOK VLC receiver. IEEE Photonics Technol. Lett. 2021, 33, 487–490. [Google Scholar] [CrossRef]
- Soltani, M.D.; Purwita, A.A.; Zeng, Z.; Haas, H.; Safari, M. Modeling the random orientation of mobile devices: Measurement, analysis and LiFi use case. IEEE Trans. Commun. 2018, 67, 2157–2172. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. Measurements-based channel models for indoor LiFi systems. IEEE Trans. Wirel. Commun. 2020, 20, 827–842. [Google Scholar] [CrossRef]
- Yesilkaya, A.; Bian, R.; Tavakkolnia, I.; Haas, H. OFDM-based optical spatial modulation. IEEE J. Sel. Top. Signal Process. 2019, 13, 1433–1444. [Google Scholar] [CrossRef]
- Eroglu, Y.S.; Anjinappa, C.K.; Guvenc, I.; Pala, N. Slow beam steering and NOMA for indoor multi-user visible light communications. IEEE Trans. Mob. Comput. 2019, 20, 1627–1641. [Google Scholar] [CrossRef]
- Su, N.; Panayirci, E.; Koca, M.; Yesilkaya, A.; Poor, H.V.; Haas, H. Physical layer security for multi-user MIMO visible light communication systems with generalized space shift keying. IEEE Trans. Commun. 2021, 69, 2585–2598. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hossan, M.T.; Islam, A.; Jang, Y.M. A comparative survey of optical wireless technologies: Architectures and applications. IEEE Access 2018, 6, 9819–9840. [Google Scholar] [CrossRef]
- Al-Kinani, A.; Wang, C.X.; Zhou, L.; Zhang, W. Optical wireless communication channel measurements and models. IEEE Commun. Surv. Tutor. 2018, 20, 1939–1962. [Google Scholar] [CrossRef]
- Marcus, M.; Burtle, J.; Franca, B.; Lahjouji, A.; McNeil, N. Federal Communications Commission Spectrum Policy Task Force; Report of the Unlicensed Devices and Experimental Licenses Working Group: Washington, DC, USA, 2002. [Google Scholar]
- Kliks, A.; Kulacz, L.; Kryszkiewicz, P.; Bogucka, H.; Dryjanski, M.; Isaksson, M.; Koudouridis, G.P.; Tengkvist, P. Beyond 5G: Big data processing for better spectrum utilization. IEEE Veh. Technol. Mag. 2020, 15, 40–50. [Google Scholar] [CrossRef]
- Liang, Y.C.; Zhang, Q.; Larsson, E.G.; Li, G.Y. Symbiotic radio: Cognitive backscattering communications for future wireless networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1242–1255. [Google Scholar] [CrossRef]
- Bhattarai, S.; Park, J.M.J.; Gao, B.; Bian, K.; Lehr, W. An overview of dynamic spectrum sharing: Ongoing initiatives, challenges, and a roadmap for future research. IEEE Trans. Cogn. Commun. Netw. 2016, 2, 110–128. [Google Scholar] [CrossRef]
- Wang, B.; Liu, K.R. Advances in cognitive radio networks: A survey. IEEE J. Sel. Top. Signal Process. 2010, 5, 5–23. [Google Scholar] [CrossRef]
- Mitola, J. Cognitive radio for flexible mobile multimedia communications. In Proceedings of the 1999 IEEE International Workshop on Mobile Multimedia Communications (MoMuC’99) (Cat. No. 99EX384), San Diego, CA, USA, 15–17 November 1999; IEEE: Piscataway, NJ, USA, 1999; pp. 3–10. [Google Scholar]
- Haykin, S. Cognitive radio: Brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 2005, 23, 201–220. [Google Scholar] [CrossRef]
- Zhang, K.; Leng, S.; Peng, X.; Pan, L.; Maharjan, S.; Zhang, Y. Artificial intelligence inspired transmission scheduling in cognitive vehicular communications and networks. IEEE Internet Things J. 2018, 6, 1987–1997. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Liang, Y.C.; Kam, P.Y. Backscatter-NOMA: A symbiotic system of cellular and Internet-of-Things networks. IEEE Access 2019, 7, 20000–20013. [Google Scholar] [CrossRef]
- Long, R.; Liang, Y.C.; Guo, H.; Yang, G.; Zhang, R. Symbiotic radio: A new communication paradigm for passive Internet of Things. IEEE Internet Things J. 2019, 7, 1350–1363. [Google Scholar] [CrossRef]
- Sharma, S.K.; Bogale, T.E.; Le, L.B.; Chatzinotas, S.; Wang, X.; Ottersten, B. Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Commun. Surv. Tutor. 2017, 20, 674–707. [Google Scholar] [CrossRef]
- Naparstek, O.; Cohen, K. Deep multi-user reinforcement learning for distributed dynamic spectrum access. IEEE Trans. Wirel. Commun. 2018, 18, 310–323. [Google Scholar] [CrossRef]
- Jacob, S.; Menon, V.G.; Joseph, S.; Vinoj, P.; Jolfaei, A.; Lukose, J.; Raja, G. A novel spectrum sharing scheme using dynamic long short-term memory with CP-OFDMA in 5G networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 926–934. [Google Scholar] [CrossRef]
- Hu, S.; Liang, Y.C.; Xiong, Z.; Niyato, D. Blockchain and artificial intelligence for dynamic resource sharing in 6G and beyond. IEEE Wirel. Commun. 2021, 28, 145–151. [Google Scholar] [CrossRef]
- Wei, Z.; Yuan, W.; Li, S.; Yuan, J.; Bharatula, G.; Hadani, R.; Hanzo, L. Orthogonal time-frequency space modulation: A promising next-generation waveform. IEEE Wirel. Commun. 2021, 28, 136–144. [Google Scholar] [CrossRef]
- Darwazeh, I.; Ghannam, H.; Xu, T. The first 15 years of SEFDM: A brief survey. In Proceedings of the 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Budapest, Hungary, 18–20 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7. [Google Scholar]
- Li, D. Overlapped multiplexing principle and an improved capacity on additive white Gaussian noise channel. IEEE Access 2017, 6, 6840–6848. [Google Scholar] [CrossRef]
- Liu, F.; Masouros, C.; Petropulu, A.P.; Griffiths, H.; Hanzo, L. Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Trans. Commun. 2020, 68, 3834–3862. [Google Scholar] [CrossRef]
- Basar, E.; Wen, M.; Mesleh, R.; Di Renzo, M.; Xiao, Y.; Haas, H. Index modulation techniques for next-generation wireless networks. IEEE Access 2017, 5, 16693–16746. [Google Scholar] [CrossRef]
- Costello, D.J.; Forney, G.D. Channel coding: The road to channel capacity. Proc. IEEE 2007, 95, 1150–1177. [Google Scholar] [CrossRef]
- Gallager, R. Low-density parity-check codes. IRE Trans. Inf. Theory 1962, 8, 21–28. [Google Scholar] [CrossRef]
- Berrou, C.; Glavieux, A.; Thitimajshima, P. Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. In Proceedings of the ICC’93-IEEE International Conference on Communications, Geneva, Switzerland, 23–26 May 1993; IEEE: Piscataway, NJ, USA, 1993; Volume 2, pp. 1064–1070. [Google Scholar]
- Arikan, E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 2009, 55, 3051–3073. [Google Scholar] [CrossRef]
- Shao, S.; Hailes, P.; Wang, T.Y.; Wu, J.Y.; Maunder, R.G.; Al-Hashimi, B.M.; Hanzo, L. Survey of turbo, LDPC, and polar decoder ASIC implementations. IEEE Commun. Surv. Tutor. 2019, 21, 2309–2333. [Google Scholar] [CrossRef]
- Kschischang, F.R.; Frey, B.J.; Loeliger, H.A. Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 2001, 47, 498–519. [Google Scholar] [CrossRef]
- Wiberg, N.; Loeliger, H.A.; Kotter, R. Codes and iterative decoding on general graphs. Eur. Trans. Telecommun. 1995, 6, 513–525. [Google Scholar] [CrossRef]
- Fayyaz, U.U.; Barry, J.R. Low-complexity soft-output decoding of polar codes. IEEE J. Sel. Areas Commun. 2014, 32, 958–966. [Google Scholar] [CrossRef]
- Tal, I.; Vardy, A. List decoding of polar codes. IEEE Trans. Inf. Theory 2015, 61, 2213–2226. [Google Scholar] [CrossRef]
- Afisiadis, O.; Balatsoukas-Stimming, A.; Burg, A. A low-complexity improved successive cancellation decoder for polar codes. In Proceedings of the 2014 48th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2116–2120. [Google Scholar]
- Elkelesh, A.; Ebada, M.; Cammerer, S.; Ten Brink, S. Belief propagation list decoding of polar codes. IEEE Commun. Lett. 2018, 22, 1536–1539. [Google Scholar] [CrossRef]
- Shen, Y.; Song, W.; Ren, Y.; Ji, H.; You, X.; Zhang, C. Enhanced belief propagation decoder for 5G polar codes with bit-flipping. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 901–905. [Google Scholar] [CrossRef]
- Bas, J. Defining turbo codes as irregular LDPC codes. In Proceedings of the ISWCS 2013; The Tenth International Symposium on Wireless Communication Systems, Ilmenau, Germany, 27–30 August 2013; VDE: Frankfurt, Germany, 2013; pp. 1–2. [Google Scholar]
- Tong, J.; Wang, X.; Zhang, Q.; Zhang, H.; Wang, J.; Tong, W. Fast polar codes for terabits-per-second throughput communications. In Proceedings of the 2023 IEEE 34th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Toronto, ON, Canada, 5–8 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Studer, C.; Benkeser, C.; Belfanti, S.; Huang, Q. Design and implementation of a parallel turbo-decoder ASIC for 3GPP-LTE. IEEE J. -Solid-State Circuits 2010, 46, 8–17. [Google Scholar] [CrossRef]
- Cui, H.; Ghaffari, F.; Le, K.; Declercq, D.; Lin, J.; Wang, Z. Design of high-performance and area-efficient decoder for 5G LDPC codes. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 879–891. [Google Scholar] [CrossRef]
- Ren, Y.; Kristensen, A.T.; Shen, Y.; Balatsoukas-Stimming, A.; Zhang, C.; Burg, A. A sequence repetition node-based successive cancellation list decoder for 5G polar codes: Algorithm and implementation. IEEE Trans. Signal Process. 2022, 70, 5592–5607. [Google Scholar] [CrossRef]
- Cao, S.; Lin, T.; Zhang, S.; Xu, S.; Zhang, C. A reconfigurable and pipelined architecture for standard-compatible LDPC and polar decoding. IEEE Trans. Veh. Technol. 2021, 70, 5431–5444. [Google Scholar] [CrossRef]
- Condo, C.; Martina, M.; Masera, G. VLSI implementation of a multi-mode turbo/LDPC decoder architecture. IEEE Trans. Circuits Syst. I Regul. Pap. 2012, 60, 1441–1454. [Google Scholar] [CrossRef]
- Fossorier, M.P.; Lin, S. Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans. Inf. Theory 1995, 41, 1379–1396. [Google Scholar] [CrossRef]
- Duffy, K.R.; Li, J.; Médard, M. Capacity-achieving guessing random additive noise decoding. IEEE Trans. Inf. Theory 2019, 65, 4023–4040. [Google Scholar] [CrossRef]
- Arıkan, E. From sequential decoding to channel polarization and back again. arXiv 2019, arXiv:1908.09594. [Google Scholar]
- You, X.; Zhang, C.; Sheng, B.; Huang, Y.; Ji, C.; Shen, Y.; Zhou, W.; Liu, J. Spatiotemporal 2-D channel coding for very low latency reliable MIMO transmission. In Proceedings of the 2022 IEEE Globecom Workshops (GC Wkshps), Rio de Janeiro, Brazil, 4–8 December 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 473–479. [Google Scholar]
- Saito, Y.; Kishiyama, Y.; Benjebbour, A.; Nakamura, T.; Li, A.; Higuchi, K. Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of the 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2–5 June 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5. [Google Scholar]
- Chen, Y.; Bayesteh, A.; Wu, Y.; Ren, B.; Kang, S.; Sun, S.; Xiong, Q.; Qian, C.; Yu, B.; Ding, Z.; et al. Toward the standardization of non-orthogonal multiple access for next generation wireless networks. IEEE Commun. Mag. 2018, 56, 19–27. [Google Scholar] [CrossRef]
- Makki, B.; Chitti, K.; Behravan, A.; Alouini, M.S. A survey of NOMA: Current status and open research challenges. IEEE Open J. Commun. Soc. 2020, 1, 179–189. [Google Scholar] [CrossRef]
- Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2195. [Google Scholar] [CrossRef]
- Zeng, M.; Nguyen, N.P.; Dobre, O.A.; Poor, H.V. Securing downlink massive MIMO-NOMA networks with artificial noise. IEEE J. Sel. Top. Signal Process. 2019, 13, 685–699. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Chen, Y.; Poor, H.V. RIS enhanced massive non-orthogonal multiple access networks: Deployment and passive beamforming design. IEEE J. Sel. Areas Commun. 2020, 39, 1057–1071. [Google Scholar] [CrossRef]
- Li, X.; Zhao, M.; Zeng, M.; Mumtaz, S.; Menon, V.G.; Ding, Z.; Dobre, O.A. Hardware impaired ambient backscatter NOMA systems: Reliability and security. IEEE Trans. Commun. 2021, 69, 2723–2736. [Google Scholar] [CrossRef]
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Wang, B.; Gao, F.; Jin, S.; Lin, H.; Li, G.Y. Spatial-and frequency-wideband effects in millimeter-wave massive MIMO systems. IEEE Trans. Signal Process. 2018, 66, 3393–3406. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.C.; Zhang, J.; Letaief, K.B. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 485–500. [Google Scholar] [CrossRef]
- Myers, N.J.; Heath, R.W. InFocus: A spatial coding technique to mitigate misfocus in near-field LoS beamforming. IEEE Trans. Wirel. Commun. 2021, 21, 2193–2209. [Google Scholar] [CrossRef]
- Wei, X.; Dai, L. Channel estimation for extremely large-scale massive MIMO: Far-field, near-field, or hybrid-field? IEEE Commun. Lett. 2021, 26, 177–181. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.X.; Chang, H.; Sun, J.; Gao, X. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems. IEEE J. Sel. Areas Commun. 2020, 38, 2010–2025. [Google Scholar] [CrossRef]
- He, Z.Q.; Yuan, X. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO. IEEE Wirel. Commun. Lett. 2019, 9, 210–214. [Google Scholar] [CrossRef]
- Jamali, V.; Tulino, A.M.; Fischer, G.; Müller, R.R.; Schober, R. Intelligent surface-aided transmitter architectures for millimeter-wave ultra massive MIMO systems. IEEE Open J. Commun. Soc. 2020, 2, 144–167. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Cai, Y.; Hanzo, L. RIS-aided hybrid massive MIMO systems relying on adaptive-resolution ADCs: Robust beamforming design and resource allocation. IEEE Trans. Veh. Technol. 2021, 71, 3281–3286. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-free massive MIMO: A new next-generation paradigm. IEEE Access 2019, 7, 99878–99888. [Google Scholar] [CrossRef]
- Ammar, H.A.; Adve, R.; Shahbazpanahi, S.; Boudreau, G.; Srinivas, K.V. User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions. IEEE Commun. Surv. Tutor. 2021, 24, 611–652. [Google Scholar] [CrossRef]
- Chen, Z.; Björnson, E. Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry. IEEE Trans. Commun. 2018, 66, 5205–5219. [Google Scholar] [CrossRef]
- Wei, X.; Hu, C.; Dai, L. Deep learning for beamspace channel estimation in millimeter-wave massive MIMO systems. IEEE Trans. Commun. 2020, 69, 182–193. [Google Scholar] [CrossRef]
- Albreem, M.A.; Alhabbash, A.H.; Shahabuddin, S.; Juntti, M. Deep learning for massive MIMO uplink detectors. IEEE Commun. Surv. Tutor. 2021, 24, 741–766. [Google Scholar] [CrossRef]
- Kabir, H.D.; Khosravi, A.; Nahavandi, S.; Srinivasan, D. Neural network training for uncertainty quantification over time-range. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 5, 768–779. [Google Scholar] [CrossRef]
- Yu, X.; Lu, A.A.; Gao, X.; Li, G.Y.; Ding, G.; Wang, C.X. HF skywave massive MIMO communication. IEEE Trans. Wirel. Commun. 2021, 21, 2769–2785. [Google Scholar] [CrossRef]
- Wu, W.; Gao, X.; Sun, C.; Li, G.Y. Shallow underwater acoustic massive MIMO communications. IEEE Trans. Signal Process. 2021, 69, 1124–1139. [Google Scholar] [CrossRef]
- You, L.; Li, K.X.; Wang, J.; Gao, X.; Xia, X.G.; Ottersten, B. Massive MIMO transmission for LEO satellite communications. IEEE J. Sel. Areas Commun. 2020, 38, 1851–1865. [Google Scholar] [CrossRef]
- Li, Q.C.; Niu, H.; Papathanassiou, A.T.; Wu, G. 5G network capacity: Key elements and technologies. IEEE Veh. Technol. Mag. 2014, 9, 71–78. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-free massive MIMO versus small cells. IEEE Trans. Wirel. Commun. 2017, 16, 1834–1850. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L. Cell-free versus cellular massive MIMO: What processing is needed for cell-free to win? In Proceedings of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes, France, 2–5 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Bassoy, S.; Farooq, H.; Imran, M.A.; Imran, A. Coordinated multi-point clustering schemes: A survey. IEEE Commun. Surv. Tutor. 2017, 19, 743–764. [Google Scholar] [CrossRef]
- Kotzsch, V.; Fettweis, G. Interference analysis in time and frequency asynchronous network MIMO OFDM systems. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference, Sydney, Australia, 18–21 April 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 1–6. [Google Scholar]
- O’hara, F.; Moore, G. A high performance CW receiver using feedthru nulling. Microw. J. 1963, 6, 63–71. [Google Scholar]
- Liu, G.; Yu, F.R.; Ji, H.; Leung, V.C.; Li, X. In-band full-duplex relaying: A survey, research issues and challenges. IEEE Commun. Surv. Tutor. 2015, 17, 500–524. [Google Scholar] [CrossRef]
- Liu, W.; Huang, K.; Zhou, X.; Durrani, S. Full-duplex backscatter interference networks based on time-hopping spread spectrum. IEEE Trans. Wirel. Commun. 2017, 16, 4361–4377. [Google Scholar] [CrossRef]
- Kolodziej, K.E.; Perry, B.T.; Herd, J.S. In-band full-duplex technology: Techniques and systems survey. IEEE Trans. Microw. Theory Tech. 2019, 67, 3025–3041. [Google Scholar] [CrossRef]
- Nawaz, H.; Tekin, I. Double-differential-fed, dual-polarized patch antenna with 90 dB interport RF isolation for a 2.4 GHz in-band full-duplex transceiver. IEEE Antennas Wirel. Propag. Lett. 2017, 17, 287–290. [Google Scholar] [CrossRef]
- Komatsu, K.; Miyaji, Y.; Uehara, H. Iterative nonlinear self-interference cancellation for in-band full-duplex wireless communications under mixer imbalance and amplifier nonlinearity. IEEE Trans. Wirel. Commun. 2020, 19, 4424–4438. [Google Scholar] [CrossRef]
- Komatsu, K.; Miyaji, Y.; Uehara, H. Theoretical analysis of in-band full-duplex radios with parallel hammerstein self-interference cancellers. IEEE Trans. Wirel. Commun. 2021, 20, 6772–6786. [Google Scholar] [CrossRef]
- Chang, M.P.; Blow, E.C.; Lu, M.Z.; Sun, J.J.; Prucnal, P.R. RF characterization of an integrated microwave photonic circuit for self-interference cancellation. IEEE Trans. Microw. Theory Tech. 2017, 66, 596–605. [Google Scholar] [CrossRef]
- Wang, D.; Li, P.; Wang, Y.; Li, T.; Yang, F.; Zhou, T.; Rong, L. Photonics-assisted frequency conversion and self-interference cancellation for in-band full-duplex communication. J. Light. Technol. 2021, 40, 607–614. [Google Scholar] [CrossRef]
- Rong, B. 6G: The next horizon: From connected people and things to connected intelligence. IEEE Wirel. Commun. 2021, 28, 8. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Y.C.; Sun, S.; Kang, S.; Cheng, W.; Peng, M. Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE Wirel. Commun. 2020, 27, 218–228. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, S.; He, W.; Yu, X.; Zhang, X. Terahertz orbital angular momentum: Generation, detection and communication. China Commun. 2021, 18, 131–152. [Google Scholar] [CrossRef]
- Chen, R.; Zhou, H.; Moretti, M.; Wang, X.; Li, J. Orbital angular momentum waves: Generation, detection, and emerging applications. IEEE Commun. Surv. Tutor. 2019, 22, 840–868. [Google Scholar] [CrossRef]
- Yousif, B.B.; Elsayed, E.E. Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization. IEEE Access 2019, 7, 84401–84412. [Google Scholar] [CrossRef]
- Werner, D.H.; Jiang, Z.H. Electromagnetic Vortices: Wave Phenomena and Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Liu, K.; Cheng, Y.; Li, X.; Gao, Y. Microwave-sensing technology using orbital angular momentum: Overview of its advantages. IEEE Veh. Technol. Mag. 2019, 14, 112–118. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, Y.; Wang, Y.; Guo, K.; Gong, Y.; Guo, Z. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas. IEEE Wirel. Commun. Lett. 2020, 10, 261–265. [Google Scholar] [CrossRef]
- Liang, L.; Cheng, W.; Zhang, W.; Zhang, H. Joint OAM multiplexing and OFDM in sparse multipath environments. IEEE Trans. Veh. Technol. 2020, 69, 3864–3878. [Google Scholar] [CrossRef]
- ElMossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 990–1002. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digit. Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Zong, B.; Fan, C.; Wang, X.; Duan, X.; Wang, B.; Wang, J. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag. 2019, 14, 18–27. [Google Scholar] [CrossRef]
- Deng, R.; Di, B.; Zhang, H.; Tan, Y.; Song, L. Reconfigurable holographic surface: Holographic beamforming for metasurface-aided wireless communications. IEEE Trans. Veh. Technol. 2021, 70, 6255–6259. [Google Scholar] [CrossRef]
- Wan, Z.; Gao, Z.; Gao, F.; Di Renzo, M.; Alouini, M.S. Terahertz massive MIMO with holographic reconfigurable intelligent surfaces. IEEE Trans. Commun. 2021, 69, 4732–4750. [Google Scholar] [CrossRef]
- Konkol, M.R.; Ross, D.D.; Shi, S.; Harrity, C.E.; Wright, A.A.; Schuetz, C.A.; Prather, D.W. High-power photodiode-integrated-connected array antenna. J. Light. Technol. 2017, 35, 2010–2016. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H.D. Multi-antenna fading channel prediction empowered by artificial intelligence. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Jiang, W.; Strufe, M.; Schotten, H.D. A SON decision-making framework for intelligent management in 5G mobile networks. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1158–1162. [Google Scholar]
- Jiang, W.; Schotten, H.D. Deep learning for fading channel prediction. IEEE Open J. Commun. Soc. 2020, 1, 320–332. [Google Scholar] [CrossRef]
- Jiang, W.; Strufe, M.; Schotten, H.D. Experimental results for artificial intelligence-based self-organized 5G networks. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Huang, H.; Song, Y.; Yang, J.; Gui, G.; Adachi, F. Deep-learning-based millimeter-wave massive MIMO for hybrid precoding. IEEE Trans. Veh. Technol. 2019, 68, 3027–3032. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H.D. Neural network-based fading channel prediction: A comprehensive overview. IEEE Access 2019, 7, 118112–118124. [Google Scholar] [CrossRef]
- Jiang, W.; Schotten, H.D. Recurrent neural networks with long short-term memory for fading channel prediction. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Jiang, W.; Strufe, M.; Schotten, H.D. Intelligent network management for 5G systems: The SELFNET approach. In Proceedings of the 2017 European conference on networks and communications (EuCNC), Oulu, Finland, 12–15 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.J.A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun. Mag. 2019, 57, 84–90. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, F.; Jing, X.; Mu, J. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges. IEEE Netw. 2021, 35, 158–167. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rahman, M.L.; Wu, K.; Huang, X.; Guo, Y.J.; Chen, S.; Yuan, J. Enabling joint communication and radar sensing in mobile networks—A survey. IEEE Commun. Surv. Tutor. 2021, 24, 306–345. [Google Scholar] [CrossRef]
- Mealey, R.M. A method for calculating error probabilities in a radar communication system. IEEE Trans. Space Electron. Telem. 1963, 9, 37–42. [Google Scholar] [CrossRef]
- Sturm, C.; Wiesbeck, W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc. IEEE 2011, 99, 1236–1259. [Google Scholar] [CrossRef]
- Zhang, J.A.; Liu, F.; Masouros, C.; Heath, R.W.; Feng, Z.; Zheng, L.; Petropulu, A. An overview of signal processing techniques for joint communication and radar sensing. IEEE J. Sel. Top. Signal Process. 2021, 15, 1295–1315. [Google Scholar] [CrossRef]
- Chiriyath, A.R.; Paul, B.; Jacyna, G.M.; Bliss, D.W. Inner bounds on performance of radar and communications co-existence. IEEE Trans. Signal Process. 2015, 64, 464–474. [Google Scholar] [CrossRef]
- Kumari, P.; Choi, J.; González-Prelcic, N.; Heath, R.W. IEEE 802.11 ad-based radar: An approach to joint vehicular communication-radar system. IEEE Trans. Veh. Technol. 2017, 67, 3012–3027. [Google Scholar] [CrossRef]
- Tschorsch, F.; Scheuermann, B. Bitcoin and beyond: A technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 2016, 18, 2084–2123. [Google Scholar] [CrossRef]
- Dai, H.N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A survey. IEEE Internet Things J. 2019, 6, 8076–8094. [Google Scholar] [CrossRef]
- Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Liu, Y. A survey on the scalability of blockchain systems. IEEE Netw. 2019, 33, 166–173. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Pathirana, P.N.; Ding, M.; Seneviratne, A. Blockchain for 5G and beyond networks: A state of the art survey. J. Netw. Comput. Appl. 2020, 166, 102693. [Google Scholar] [CrossRef]
- Xiong, Z.; Zhang, Y.; Niyato, D.; Wang, P.; Han, Z. When mobile blockchain meets edge computing. IEEE Commun. Mag. 2018, 56, 33–39. [Google Scholar] [CrossRef]
- Kabir, H.M.D.; Alam, S.B.; Azam, M.I.; Hussain, M.A.; Sazzad, A.R.; Sakib, M.N.; Matin, M.A. Non-linear down-sampling and signal reconstruction, without folding. In Proceedings of the 2010 Fourth UKSim European Symposium on Computer Modeling and Simulation, Pisa, Italy, 17–19 November 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 142–146. [Google Scholar]
- Shi, G.; Xiao, Y.; Li, Y.; Xie, X. From semantic communication to semantic-aware networking: Model, architecture, and open problems. IEEE Commun. Mag. 2021, 59, 44–50. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. A Mathematical Model of Communication; University of Illinois Press: Urbana, IL, USA, 1949; Volume 11, pp. 11–20. [Google Scholar]
- Barwise, J.; Perry, J. Situations and attitudes. J. Philos. 1981, 78, 668–691. [Google Scholar] [CrossRef]
- Floridi, L. Outline of a theory of strongly semantic information. Minds Mach. 2004, 14, 197–221. [Google Scholar] [CrossRef]
- Bao, J.; Basu, P.; Dean, M.; Partridge, C.; Swami, A.; Leland, W.; Hendler, J.A. Towards a theory of semantic communication. In Proceedings of the 2011 IEEE Network Science Workshop, West Point, NY, USA, 22–24 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 110–117. [Google Scholar]
- Zhong, Y.; Zhang, R. Information ecology and semantic information theory. Doc. Inf. Knowl. 2017, 6, 4–11. [Google Scholar]
- Zhong, Y. A theory of semantic information. China Commun. 2017, 14, 1–17. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, Y.; Xiang, Y.; Uddin, M.P.; Peng, D.; Gao, L. A comprehensive survey on edge data integrity verification: Fundamentals and future trends. ACM Comput. Surv. 2024, 57, 1–34. [Google Scholar] [CrossRef]
- O’shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575. [Google Scholar] [CrossRef]
- Güler, B.; Yener, A.; Swami, A. The semantic communication game. IEEE Trans. Cogn. Commun. Netw. 2018, 4, 787–802. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z.; Li, G.Y.; Juang, B.H. Deep learning enabled semantic communication systems. IEEE Trans. Signal Process. 2021, 69, 2663–2675. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z. A lite distributed semantic communication system for Internet of Things. IEEE J. Sel. Areas Commun. 2020, 39, 142–153. [Google Scholar] [CrossRef]
- Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process. 2011, 20, 30–42. [Google Scholar] [CrossRef]
- Ni, K.; Mondal, S.K.; Kabir, H.D.; Tan, T.; Dai, H.N. Toward security quantification of serverless computing. J. Cloud Comput. 2024, 13, 140. [Google Scholar] [CrossRef]
- Kimionis, J.; Bletsas, A.; Sahalos, J.N. Increased range bistatic scatter radio. IEEE Trans. Commun. 2014, 62, 1091–1104. [Google Scholar] [CrossRef]
- Stockman, H. Communication by means of reflected power. Proc. IRE 1948, 36, 1196–1204. [Google Scholar] [CrossRef]
- Kimionis, J.; Georgiadis, A.; Daskalakis, S.N.; Tentzeris, M.M. A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. Nat. Electron. 2021, 4, 439–446. [Google Scholar] [CrossRef]
- Zawawi, Z.B.; Huang, Y.; Clerckx, B. Multiuser wirelessly powered backscatter communications: Nonlinearity, waveform design, and SINR-energy tradeoff. IEEE Trans. Wirel. Commun. 2018, 18, 241–253. [Google Scholar] [CrossRef]
- Duan, R.; Jäntti, R.; Yiğitler, H.; Ruttik, K. On the achievable rate of bistatic modulated rescatter systems. IEEE Trans. Veh. Technol. 2017, 66, 9609–9613. [Google Scholar] [CrossRef]
- Fasarakis-Hilliard, N.; Alevizos, P.N.; Bletsas, A. Coherent detection and channel coding for bistatic scatter radio sensor networking. IEEE Trans. Commun. 2015, 63, 1798–1810. [Google Scholar] [CrossRef]
- Kashyap, S.; Björnson, E.; Larsson, E.G. On the feasibility of wireless energy transfer using massive antenna arrays. IEEE Trans. Wirel. Commun. 2016, 15, 3466–3480. [Google Scholar] [CrossRef]
- Yang, G.; Ho, C.K.; Guan, Y.L. Multi-antenna wireless energy transfer for backscatter communication systems. IEEE J. Sel. Areas Commun. 2015, 33, 2974–2987. [Google Scholar] [CrossRef]
- Mishra, D.; Larsson, E.G. Optimal channel estimation for reciprocity-based backscattering with a full-duplex MIMO reader. IEEE Trans. Signal Process. 2019, 67, 1662–1677. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, J.; Ji, Y.; Bai, L.; Sun, X. Network topology reconfiguration for FSO-based fronthaul/backhaul in 5G+ wireless networks. IEEE Access 2018, 6, 69426–69437. [Google Scholar] [CrossRef]
- Douik, A.; Dahrouj, H.; Al-Naffouri, T.Y.; Alouini, M.S. Hybrid radio/free-space optical design for next generation backhaul systems. IEEE Trans. Commun. 2016, 64, 2563–2577. [Google Scholar] [CrossRef]
- Bag, B.; Das, A.; Ansari, I.S.; Prokeš, A.; Bose, C.; Chandra, A. Performance analysis of hybrid FSO systems using FSO/RF-FSO link adaptation. IEEE Photonics J. 2018, 10, 1–17. [Google Scholar] [CrossRef]
- Zhang, H.; Dong, Y.; Cheng, J.; Hossain, M.J.; Leung, V.C. Fronthauling for 5G LTE-U ultra dense cloud small cell networks. IEEE Wirel. Commun. 2016, 23, 48–53. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Hasan, M.K.; Shahjalal, M.; Hossan, M.T.; Jang, Y.M. Optical wireless hybrid networks: Trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutor. 2020, 22, 930–966. [Google Scholar] [CrossRef]
- Pan, C.; Yi, J.; Yin, C.; Yu, J.; Li, X. Joint 3D UAV placement and resource allocation in software-defined cellular networks with wireless backhaul. IEEE Access 2019, 7, 104279–104293. [Google Scholar] [CrossRef]
- Mozaffari, M.; Kasgari, A.T.Z.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5G with UAVs: Foundations of a 3D wireless cellular network. IEEE Trans. Wirel. Commun. 2018, 18, 357–372. [Google Scholar] [CrossRef]
- Huang, T.; Yang, W.; Wu, J.; Ma, J.; Zhang, X.; Zhang, D. A survey on green 6G network: Architecture and technologies. IEEE Access 2019, 7, 175758–175768. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.R.; Wong, K.K.; Imran, M.A.; Bennis, M.; Debbah, M. A speculative study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Wang, H.; Wang, W.; Chen, X.; Zhang, Z. Wireless information and energy transfer in interference aware massive MIMO systems. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX, USA, 8–12 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 2556–2561. [Google Scholar]
- Kobayashi, M.; Caire, G.; Kramer, G. Joint state sensing and communication: Optimal tradeoff for a memoryless case. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 111–115. [Google Scholar]
- Shen, X.; Gao, J.; Wu, W.; Lyu, K.; Li, M.; Zhuang, W.; Li, X.; Rao, J. AI-assisted network-slicing based next-generation wireless networks. IEEE Open J. Veh. Technol. 2020, 1, 45–66. [Google Scholar] [CrossRef]
- Yi, C.; Huang, S.; Cai, J. An incentive mechanism integrating joint power, channel and link management for social-aware D2D content sharing and proactive caching. IEEE Trans. Mob. Comput. 2017, 17, 789–802. [Google Scholar] [CrossRef]
- Nasimi, M.; Habibi, M.A.; Han, B.; Schotten, H.D. Edge-assisted congestion control mechanism for 5G network using software-defined networking. In Proceedings of the 2018 15th International symposium on wireless communication systems (ISWCS), Lisbon, Portugal, 28–31 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- Habibi, M.A.; Han, B.; Nasimi, M.; Kuruvatti, N.P.; Fellan, A.; Schotten, H.D. Towards a fully virtualized, cloudified, and slicing-aware RAN for 6G mobile networks. In 6G Mobile Wireless Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 327–358. [Google Scholar]
- ENI, E.G. Experiential Networked Intelligence (ENI) Requirements; Version 2.1. 1; ETSI: Sophia Antipolis, France, 2019. [Google Scholar]
- Wang, C.X.; Lv, Z.; Gao, X.; You, X.; Hao, Y.; Haas, H. Pervasive wireless channel modeling theory and applications to 6G GBSMs for all frequency bands and all scenarios. IEEE Trans. Veh. Technol. 2022, 71, 9159–9173. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Wang, C.X.; Sun, J.; Xiao, H. 5G millimeter wave channel sounders, measurements, and models: Recent developments and future challenges. IEEE Commun. Mag. 2018, 57, 138–145. [Google Scholar] [CrossRef]
- Nielsen, J.O.; Fan, W.; Eggers, P.C.; Pedersen, G.F. A channel sounder for massive MIMO and mmWave channels. IEEE Commun. Mag. 2018, 56, 67–73. [Google Scholar] [CrossRef]
- Roh, W.; Seol, J.Y.; Park, J.; Lee, B.; Lee, J.; Kim, Y.; Cho, J.; Cheun, K.; Aryanfar, F. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Raghavan, V.; Partyka, A.; Sampath, A.; Subramanian, S.; Koymen, O.H.; Ravid, K.; Cezanne, J.; Mukkavilli, K.; Li, J. Millimeter-wave MIMO prototype: Measurements and experimental results. IEEE Commun. Mag. 2018, 56, 202–209. [Google Scholar] [CrossRef]
- Anjos, E.V.; SalarRahimi, M.; Bressner, T.A.; Takhighani, P.; Lahuerta-Lavieja, A.; Elsakka, A.; Siebenga, J.S.; Volski, V.; Fager, C.; Schreurs, D.; et al. FORMAT: A reconfigurable tile-based antenna array system for 5G and 6G millimeter-wave testbeds. IEEE Syst. J. 2022, 16, 4489–4500. [Google Scholar] [CrossRef]
- Chung, M.; Liu, L.; Johansson, A.; Gunnarsson, S.; Nilsson, M.; Ying, Z.; Zander, O.; Samanta, K.; Clifton, C.; Koimori, T.; et al. LuMaMi28: Real-time millimeter-wave massive MIMO systems with antenna selection. arXiv 2021, arXiv:2109.03273. [Google Scholar]
- Cai, Y.; Zhu, M.; Liang, S.; Zhang, J.; Lei, M.; Hua, B.; Wang, P.; Tian, L.; Zou, Y.; Li, A.; et al. Demonstration of real-time photonics-assisted mm-wave communication based on Ka-band large-scale phased-array antenna and automatic beam tracking technique. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 6–10 March 2022; Optica Publishing Group: Washington, DC, USA, 2022; p. M3Z-12. [Google Scholar]
- Sen, P.; Pados, D.A.; Batalama, S.N.; Einarsson, E.; Bird, J.P.; Jornet, J.M. The TeraNova platform: An integrated testbed for ultra-broadband wireless communications at true Terahertz frequencies. Comput. Netw. 2020, 179, 107370. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Yu, J.; You, X. Demonstration of record-high 352-Gbps terahertz wired transmission over hollow-core fiber at 325 GHz. Sci. China Inf. Sci. 2022, 65, 127301. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, S.; Di, B.; Tan, Y.; Di Renzo, M.; Debbah, M.; Han, Z.; Poor, H.V.; Song, L. Intelligent omni-surfaces for full-dimensional wireless communications: Principles, technology, and implementation. IEEE Commun. Mag. 2022, 60, 39–45. [Google Scholar] [CrossRef]
- Araghi, A.; Khalily, M.; Safaei, M.; Bagheri, A.; Singh, V.; Wang, F.; Tafazolli, R. Reconfigurable intelligent surface (RIS) in the sub-6 GHz band: Design, implementation, and real-world demonstration. IEEE Access 2022, 10, 2646–2655. [Google Scholar] [CrossRef]
- Amri, M.M.; Tran, N.M.; Choi, K.W. Reconfigurable intelligent surface-aided wireless communications: Adaptive beamforming and experimental validations. IEEE Access 2021, 9, 147442–147457. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Bi, S.; Xu, S.; Yang, F.; Chen, Z.; Di Renzo, M.; et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results. IEEE Access 2020, 8, 45913–45923. [Google Scholar] [CrossRef]
- Li, O.; He, J.; Zeng, K.; Yu, Z.; Du, X.; Liang, Y.; Wang, G.; Chen, Y.; Zhu, P.; Tong, W.; et al. Integrated sensing and communication in 6G a prototype of high resolution THz sensing on portable device. In Proceedings of the 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 544–549. [Google Scholar]
- Xu, T.; Liu, F.; Masouros, C.; Darwazeh, I. An experimental proof of concept for integrated sensing and communications waveform design. IEEE Open J. Commun. Soc. 2022, 3, 1643–1655. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, Y.; Hu, Y.; Xu, G.; Zhang, J.C. Distributed FD-MIMO (D-FD-MIMO): From concept to field test. In Proceedings of the 2022 IEEE Radio and Wireless Symposium (RWS), Las Vegas, Nevada, USA, 16–19 January 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 86–89. [Google Scholar]
- Callebaut, G.; Van Mulders, J.; Ottoy, G.; Delabie, D.; Cox, B.; Stevens, N.; Van der Perre, L. Techtile–open 6g r&d testbed for communication, positioning, sensing, wpt and federated learning. In Proceedings of the 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Grenoble, France, 7–10 June 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 417–422. [Google Scholar]
- Wang, D.; Zhang, C.; Du, Y.; Zhao, J.; Jiang, M.; You, X. Implementation of a cloud-based cell-free distributed massive MIMO system. IEEE Commun. Mag. 2020, 58, 61–67. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Z.; Li, J.; Ge, D.; Chen, Z.; Vellekoop, I.M.; Koonen, A. Wide-coverage beam-steered 40-Gbit/s non-line-of-sight optical wireless connectivity for Industry 4.0. J. Light. Technol. 2020, 38, 6801–6806. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Chen, C.; Videv, S.; Parol, D.; Poves, E.; Alshaer, H.; Islim, M.S. Introduction to indoor networking concepts and challenges in LiFi. J. Opt. Commun. Netw. 2020, 12, A190–A203. [Google Scholar] [CrossRef]
- Matsuda, K.; Binkai, M.; Koshikawa, S.; Yoshida, T.; Sano, H.; Konishi, Y.; Suzuki, N. Field demonstration of real-time 14 Tb/s 220 m FSO transmission with class 1 eye-safe 9-aperture transmitter. In Proceedings of the Optical Fiber Communication Conference, San Francisco, CA, USA, 6–10 June 2021; Optica Publishing Group: Washington, DC, USA, 2021; p. F3C-2. [Google Scholar]
- Dochhan, A.; Poliak, J.; Surof, J.; Richerzhagen, M.; Kelemu, H.F.; Calvo, R.M. 13.16 Tbit/s free-space optical transmission over 10.45 km for geostationary satellite feeder-links. In Photonic Networks, Proceedings of the 20th ITG-Symposium, Leipzig, Germany, 8 May 2019; VDE: Frankfurt, Germany, 2019; pp. 1–3. [Google Scholar]
- Lain, J.K.; Yang, Z.D.; Xu, T.W. Experimental DCO-OFDM optical camera communication systems with a commercial smartphone camera. IEEE Photonics J. 2019, 11, 1–13. [Google Scholar] [CrossRef]
- Han, C.; Akyildiz, I.F. Distance-aware multi-carrier (DAMC) modulation in terahertz band communication. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 5461–5467. [Google Scholar]
- Jornet, J.M.; Akyildiz, I.F. The internet of multimedia nano-things in the Terahertz band. In European Wireless 2012, Proceedings of the 18th European Wireless Conference 2012, Poznań, Poland, 18–20 April 2012; VDE: Frankfurt, Germany, 2012; pp. 1–8. [Google Scholar]
- Zhou, D.; Sheng, M.; Li, J.; Han, Z. Aerospace integrated networks innovation for empowering 6G: A survey and future challenges. IEEE Commun. Surv. Tutor. 2023, 25, 975–1019. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Di Renzo, M.; Debbah, M. Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Kato, N.; Mao, B.; Tang, F.; Kawamoto, Y.; Liu, J. Ten challenges in advancing machine learning technologies toward 6G. IEEE Wirel. Commun. 2020, 27, 96–103. [Google Scholar] [CrossRef]
- Katz, M.; Pirinen, P.; Posti, H. Towards 6G: Getting ready for the next decade. In Proceedings of the 2019 16th international symposium on wireless communication systems (ISWCS), Oulu, Finland, 27–30 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 714–718. [Google Scholar]
- Nayak, S.; Patgiri, R. 6G communication: Envisioning the key issues and challenges. arXiv 2020, arXiv:2004.04024. [Google Scholar] [CrossRef]
- Yan, L.; Han, C.; Yuan, J. Hybrid precoding for 6G terahertz communications: Performance evaluation and open problems. In Proceedings of the 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–5. [Google Scholar]
- Mumtaz, S.; Jornet, J.M.; Aulin, J.; Gerstacker, W.H.; Dong, X.; Ai, B. Terahertz communication for vehicular networks. IEEE Trans. Veh. Technol. 2017, 66. [Google Scholar]
- Series, M. Passive and Active Antenna Systems for Base Stations of IMT Systems; Electronic Publication: Geneva, Switzerland, 2015. [Google Scholar]
- Elmeadawy, S.; Shubair, R.M. 6G wireless communications: Future technologies and research challenges. In Proceedings of the 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 19–21 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Yang, P.; Xiao, Y.; Xiao, M.; Li, S. 6G wireless communications: Vision and potential techniques. IEEE Netw. 2019, 33, 70–75. [Google Scholar] [CrossRef]
- Yao, H.; Wang, L.; Wang, X.; Lu, Z.; Liu, Y. The space-terrestrial integrated network: An overview. IEEE Commun. Mag. 2018, 56, 178–185. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Dohler, M.; Heath, R.W.; Lozano, A.; Papadias, C.B.; Valenzuela, R.A. Is the PHY layer dead? IEEE Commun. Mag. 2011, 49, 159–165. [Google Scholar] [CrossRef]
- Raghavan, V.; Li, J. Evolution of physical-layer communications research in the post-5G era. IEEE Access 2019, 7, 10392–10401. [Google Scholar] [CrossRef]
- Drake, F. Mobile phone masts: Protesting the scientific evidence. Public Underst. Sci. 2006, 15, 387–410. [Google Scholar] [CrossRef]
- Philbeck, I. Connecting the unconnected: Working together to achieve connect 2020 agenda targets. In Proceedings of the Special session of the Broadband Commission and the World Economic Forum at Davos Annual Meeting, Davos-Klosters, Switzerland, 17–20 January 2017. [Google Scholar]
- Gandhi, O.P.; Riazi, A. Absorption of millimeter waves by human beings and its biological implications. IEEE Trans. Microw. Theory Tech. 1986, 34, 228–235. [Google Scholar] [CrossRef]
- Geesink, J.H.; Meijer, D.K.F. Bio-Soliton Model that predicts Non-Thermal Electromagnetic Radiation Frequency Bands, that either Stabilize or Destabilize Life Conditions. arXiv 2016, arXiv:1610.04855. [Google Scholar] [CrossRef]
- Name, A. Electromagnetic Wave Effects on Neuronal Signaling; HAL Open Science Repository: Bengaluru, India, 2020. [Google Scholar]
- Talbi, O.; Zadeh-Haghighi, H.; Simon, C. The Radical Pair Mechanism Cannot Explain Telecommunication Frequency Effects on Reactive Oxygen Species. arXiv 2024, arXiv:2407.03358. [Google Scholar]
- Name, A. 6G’s Terahertz Radiation and Male Reproductive Health Risks; Xoffencer International Publication: Dabra, India, 2023. [Google Scholar]
- ICNIRP. Principles for Non-Ionizing Radiation Protection; ICNIRP: Munich, Germany, 2020. [Google Scholar]
- Wu, Y. Ethically responsible and trustworthy autonomous systems for 6G. IEEE Netw. 2022, 36, 126–133. [Google Scholar] [CrossRef]
- Wang, S.; Qureshi, M.A.; Miralles-Pechuán, L.; Huynh-The, T.; Gadekallu, T.R.; Liyanage, M. Explainable AI for 6G Use Cases: Technical Aspects and Research Challenges. IEEE Open J. Commun. Soc. 2024, 5, 2490–2540. [Google Scholar] [CrossRef]
- Bahrami, M.K.; Nazari, S. Digital design of a spatial-pow-STDP learning block with high accuracy utilizing pow CORDIC for large-scale image classifier spatiotemporal SNN. Sci. Rep. 2024, 14, 3388. [Google Scholar] [CrossRef]
- Amiri, M.; Nazari, S. Efficient hardware design of spiking neurons and unsupervised learning module in large scale pattern classification network. Eng. Appl. Artif. Intell. 2024, 137, 109255. [Google Scholar] [CrossRef]
- Meng, S.; Wu, S.; Zhang, J.; Cheng, J.; Zhou, H.; Zhang, Q. Semantics-empowered space-air-ground-sea integrated network: New paradigm, frameworks, and challenges. IEEE Commun. Surv. Tutor. 2024. [Google Scholar] [CrossRef]
- Xiao, Y.; Ye, Z.; Wu, M.; Li, H.; Xiao, M.; Alouini, M.S.; Al-Hourani, A.; Cioni, S. Space-Air-Ground Integrated Wireless Networks for 6G: Basics, Key Technologies and Future Trends. IEEE J. Sel. Areas Commun. 2024, 42, 3327–3354. [Google Scholar] [CrossRef]
- Kuru, K. Planning the future of smart cities with swarms of fully autonomous unmanned aerial vehicles using a novel framework. IEEE Access 2021, 9, 6571–6595. [Google Scholar] [CrossRef]
KPI Name | Definition and Context | 5G | 6G | Improvement (Times) |
---|---|---|---|---|
Peak data rate | The highest attainable data transfer rate per user or, device under optimal circumstances. | 20 Gbps [38] | 1 Tbps | 50 Times |
User-perceived data rate | User-perceived data rate refers to the speed at which data are sent and may be accessed by a mobile user or device throughout the whole service area. | 100 Mbps [38] | 10 Gbps | 100 Times |
Latency | The amount of time a packet takes to go from its source to its destination is known as its latency. | 1 ms [38] | 0.1 ms | 10 Times |
Delay jitter | Variability in the time it takes for packets to reach the destination, causing fluctuations in transmission delay. | 1 ms [26] | 1 s | 1000 Times |
Area traffic capacity | Aggregate data transfer capacity provided within a specified geographical region. | 10 Mbps/m2 [38] | 10 Gbps/m2 | 1000 Times |
Connection density | The collective count of connected and/or reachable devices within a defined area. | 106 devices/km2 [38] | 108 devices/km2 | 100 Times |
Coverage | The proportion of network service availability across a given area. | 10% [39] | 99% | 10 Times |
Spectrum efficiency | The mean data transfer rate per spectrum allocation and per cellular unit. | 30 bps/Hz [40] | ≥90 bps/Hz | ≥3 Times |
Network energy efficiency | Refers to the ratio of data bits delivered or received by users to the quantity of energy used per unit. | 107 bit/J [27] | 109 bit/J | 100 Times |
Cost efficiency | Refers to the relationship between the value obtained from a user’s data use and the cost of the data traffic involved. | 10 Gb/$ [27] | 500 Gb/$ | 50 Times |
Mobility | Refers to the maximum attainable velocity at which a certain level of service quality (QoS) can be maintained, while ensuring smooth transitions between different radio nodes. | 500 km/h [38] | 1000 km/h | 2 Times |
Battery life | The amount of time an IoT device’s battery will last. | 10 years [28] | 20 years | 2 Times |
Reliability | The rate of successful packet reception within a defined upper delay threshold. | 99.99% [41] | >99.99999% | >100 Times |
Positioning | The precision of positioning for both indoor and outdoor environments. | 1 m & 10 m [41] | 10 cm & 1 m | 10 Times |
Sensing/Imaging resolution | The process of sensing and capturing visual information at a high level of detail. | 1 m [29] | 1 mm | 1000 Times |
Security capacity | The transmission rate of reliable data under the risk of being intercepted by other parties. | Low [32,33] | High | – |
Intelligence level | The smart level of the information method. | Low [32,33] | High | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiky, M.N.A.; Rahman, M.E.; Uzzal, M.S.; Kabir, H.M.D. A Comprehensive Exploration of 6G Wireless Communication Technologies. Computers 2025, 14, 15. https://doi.org/10.3390/computers14010015
Siddiky MNA, Rahman ME, Uzzal MS, Kabir HMD. A Comprehensive Exploration of 6G Wireless Communication Technologies. Computers. 2025; 14(1):15. https://doi.org/10.3390/computers14010015
Chicago/Turabian StyleSiddiky, Md Nurul Absar, Muhammad Enayetur Rahman, Md Shahriar Uzzal, and H. M. Dipu Kabir. 2025. "A Comprehensive Exploration of 6G Wireless Communication Technologies" Computers 14, no. 1: 15. https://doi.org/10.3390/computers14010015
APA StyleSiddiky, M. N. A., Rahman, M. E., Uzzal, M. S., & Kabir, H. M. D. (2025). A Comprehensive Exploration of 6G Wireless Communication Technologies. Computers, 14(1), 15. https://doi.org/10.3390/computers14010015