A Merging Approach for Improving the Quality of Gridded Precipitation Datasets over Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rain Gauge Measurements
2.3. Satellite Rainfall Estimates from TAMSAT
2.4. Merging Approach
2.4.1. Quality Control
2.4.2. Bias Adjustment
2.4.3. Merging Based on Regression Kriging
2.4.4. Evaluation Metrics
3. Results
3.1. Quality Control Results
3.2. Bias Correction of TAMSAT Daily Precipitation
3.3. Bias Correction of Extreme Daily Precipitation
3.4. Merging of Bias-Corrected and In Situ Observation Datasets
3.5. Spatial Distribution of Merging of Bias-Corrected and In Situ Observation Datasets
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biasutti, M. Rainfall Trends in the African Sahel: Characteristics, Processes, and Causes. WIREs Clim. Chang. 2019, 10, e591. [Google Scholar] [CrossRef]
- Tsowa, U.M.; Abdulkadir, A. Livelihoods Sustainability in Agriculture-Intensive Semi-Arid and Dry Sub-Humid Areas of West Africa—Pointers from Nigeria 2019. Preprints 2019, 2019010234. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef]
- Trisos, C.; Adelekan, I.; Totin, E.; Ayanlade, A.; Efitre, J.; Gemeda, A.; Kalaba, K.; Lennard, C.; Masao, C.; Mgaya, Y.; et al. Climate Change 2022—Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2023; pp. 1285–1456. ISBN 978-1-00-932583-7. [Google Scholar]
- Washington, R.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Kay, G.; Todd, M. African Climate Change: Taking the Shorter Route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
- Tang, L.; Tian, Y.; Yan, F.; Habib, E. An Improved Procedure for the Validation of Satellite-Based Precipitation Estimates. Atmos. Res. 2015, 163, 61–73. [Google Scholar] [CrossRef]
- Sadeghi, M.; Asanjan, A.A.; Faridzad, M.; Nguyen, P.; Hsu, K.; Sorooshian, S.; Braithwaite, D. PERSIANN-CNN: Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks–Convolutional Neural Networks. J. Hydrometeorol. 2019, 20, 2273–2289. [Google Scholar] [CrossRef]
- Smith, T.M.; Arkin, P.A.; Bates, J.J.; Huffman, G.J. Estimating Bias of Satellite-Based Precipitation Estimates. J. Hydrometeorol. 2006, 7, 841–856. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; van der Zaag, P.; Berhe, A.G.; Haile, G.G.; Hagos, E.Y.; Hagos, M.K. Comparison and Validation of Eight Satellite Rainfall Products over the Rugged Topography of Tekeze-Atbara Basin at Different Spatial and Temporal Scales. Hydrol. Earth Syst. Sci. Discuss. 2017, 2017, 1–31. [Google Scholar] [CrossRef]
- Gumindoga, W.; Rientjes, T.H.M.; Haile, A.T.; Makurira, H.; Reggiani, P. Performance of Bias-Correction Schemes for CMORPH Rainfall Estimates in the Zambezi River Basin. Hydrol. Earth Syst. Sci. 2019, 23, 2915–2938. [Google Scholar] [CrossRef]
- Jakob Themeßl, M.; Gobiet, A.; Leuprecht, A. Empirical-statistical Downscaling and Error Correction of Daily Precipitation from Regional Climate Models. Int. J. Climatol. 2011, 31, 1530–1544. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Bias Correction of Regional Climate Model Simulations for Hydrological Climate-Change Impact Studies: Review and Evaluation of Different Methods. J. Hydrol. 2012, 456–457, 12–29. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding Appropriate Bias Correction Methods in Downscaling Precipitation for Hydrologic Impact Studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Lafon, T.; Dadson, S.; Buys, G.; Prudhomme, C. Bias Correction of Daily Precipitation Simulated by a Regional Climate Model: A Comparison of Methods. Int. J. Climatol. 2013, 33, 1367–1381. [Google Scholar] [CrossRef]
- Chen, J.; St-Denis, B.G.; Brissette, F.P.; Lucas-Picher, P. Using Natural Variability as a Baseline to Evaluate the Performance of Bias Correction Methods in Hydrological Climate Change Impact Studies. J. Hydrometeorol. 2016, 17, 2155–2174. [Google Scholar] [CrossRef]
- Goshime, D. Integration of Satellite and Ground-Based Rainfall Data for Water Resources Assessment in Central Rift Valley Lakes Basin, Ethiopia. Ph.D. Thesis, CY Cergy Paris Université, Cergy, France, 2020. [Google Scholar]
- Choudhary, A.; Dimri, A.P. On Bias Correction of Summer Monsoon Precipitation over India from CORDEX-SA Simulations. Int. J. Climatol. 2019, 39, 1388–1403. [Google Scholar] [CrossRef]
- Ehret, U.; Zehe, E.; Wulfmeyer, V.; Warrach-Sagi, K.; Liebert, J. HESS Opinions “Should We Apply Bias Correction to Global and Regional Climate Model Data”? Hydrol. Earth Syst. Sci. 2012, 16, 3391–3404. [Google Scholar] [CrossRef]
- Lakew, H.B. Investigating the Effectiveness of Bias Correction and Merging MSWEP with Gauged Rainfall for the Hydrological Simulation of the Upper Blue Nile Basin. J. Hydrol. Reg. Stud. 2020, 32, 100741. [Google Scholar] [CrossRef]
- Datta, S.; Jones, W.L.; Roy, B.; Tokay, A. Spatial Variability of Surface Rainfall as Observed from TRMM Field Campaign Data. J. Appl. Meteorol. Clim. 2003, 42, 598–610. [Google Scholar] [CrossRef]
- Duque-Gardeazabal, N.; Zamora, D.; Rodriguez, E. Analysis of the Kernel Bandwidth Influence in the Double Smoothing Merging Algorithm to Improve Rainfall Fields in Poorly Gauged Basins. In Proceedings of the 13th International Conference on Hydroinformatics (HIC 2018), Palermo, Italy, 1–6 July 2018. [Google Scholar]
- Bhuiyan, M.A.E.; Nikolopoulos, E.I.; Anagnostou, E.N. Machine Learning–Based Blending of Satellite and Reanalysis Precipitation Datasets: A Multiregional Tropical Complex Terrain Evaluation. J. Hydrometeorol. 2019, 20, 2147–2161. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; McBratney, A.B.; Chittleborough, D.J. Further Results on Prediction of Soil Properties from Terrain Attributes: Heterotopic Cokriging and Regression-Kriging. Geoderma 1995, 67, 215–226. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997; ISBN 978-0-19-511538-3. [Google Scholar]
- Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G. About Regression-Kriging: From Equations to Case Studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Gia Pham, T.; Kappas, M.; Van Huynh, C.; Hoang Khanh Nguyen, L. Application of Ordinary Kriging and Regression Kriging Method for Soil Properties Mapping in Hilly Region of Central Vietnam. ISPRS Int. J. Geo-Inf. 2019, 8, 147. [Google Scholar] [CrossRef]
- Beck, H.E.; Van Dijk, A.I.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; De Roo, A. MSWEP: 3-hourly 0.25 Global Gridded Precipitation (1979–2015) by Merging Gauge, Satellite, and Reanalysis Data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef]
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, How Much of the Earth’s Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G. Improving the Global Precipitation Record: GPCP Version 2.1. Geophys. Res. Lett. 2009, 36, L17808. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K.; Gnoumou, F. Agroclimatology of West Africa: Burkina Faso. Available online: https://oar.icrisat.org/864/ (accessed on 5 August 2024).
- Oueslati, B.; Camberlin, P.; Zoungrana, J.; Roucou, P.; Diallo, S. Variability and Trends of Wet Season Temperature in the Sudano-Sahelian Zone and Relationships with Precipitation. Clim. Dyn. 2018, 50, 1067–1090. [Google Scholar] [CrossRef]
- Tirogo, J.; Jost, A.; Biaou, A.; Valdes-Lao, D.; Koussoubé, Y.; Ribstein, P. Climate Variability and Groundwater Response: A Case Study in Burkina Faso (West Africa). Water 2016, 8, 171. [Google Scholar] [CrossRef]
- Dinku, T. Challenges with Availability and Quality of Climate Data in Africa. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Chapter 7; pp. 71–80. ISBN 978-0-12-815998-9. [Google Scholar]
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.; Nkonde, E.; Senkunda, S.; et al. A New, Long-Term Daily Satellite-Based Rainfall Dataset for Operational Monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef] [PubMed]
- Garba, J.N.; Diasso, U.J.; Waongo, M.; Sawadogo, W.; Daho, T. Performance Evaluation of Satellite-Based Rainfall Estimation across Climatic Zones in Burkina Faso. Theor. Appl. Clim. 2023, 154, 1051–1073. [Google Scholar] [CrossRef]
- Wang, F. WMO Information System: Beijing Global Information System Center. Bull. Am. Meteorol. Soc. 2013, 94, 991–994. [Google Scholar] [CrossRef]
- Feng, S.; Hu, Q.; Qian, W. Quality Control of Daily Meteorological Data in China, 1951–2000: A New Dataset. Int. J. Climatol. 2004, 24, 853–870. [Google Scholar] [CrossRef]
- Ochoa-Rodriguez, S.; Wang, L.-P.; Willems, P.; Onof, C. A Review of Radar-Rain Gauge Data Merging Methods and Their Potential for Urban Hydrological Applications. Water Resour. Res. 2019, 55, 6356–6391. [Google Scholar] [CrossRef]
- De Vera, A.; Alfaro, P.; Terra, R. Operational Implementation of Satellite-Rain Gauge Data Merging for Hydrological Modeling. Water 2021, 13, 533. [Google Scholar] [CrossRef]
- Atiah, W.A.; Amekudzi, L.K.; Aryee, J.N.A.; Preko, K.; Danuor, S.K. Validation of Satellite and Merged Rainfall Data over Ghana, West Africa. Atmosphere 2020, 11, 859. [Google Scholar] [CrossRef]
- Ogbu, K.N.; Hounguè, N.R.; Gbode, I.E.; Tischbein, B. Performance Evaluation of Satellite-Based Rainfall Products over Nigeria. Climate 2020, 8, 103. [Google Scholar] [CrossRef]
- Sennikovs, J.; Bethers, U. Statistical Downscaling Method of Regional Climate Model Results for Hydrological Modelling. In Proceedings of the 18th World IMACS/MODSIM Congress, Cairns, Australia, 13–17 July 2009. [Google Scholar]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Frankl, A.; Bao, A.; De Maeyer, P. Comparing Bias Correction Methods Used in Downscaling Precipitation and Temperature from Regional Climate Models: A Case Study from the Kaidu River Basin in Western China. Water 2018, 10, 1046. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.T.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef]
- Gutjahr, O.; Heinemann, G. Comparing Precipitation Bias Correction Methods for High-Resolution Regional Climate Simulations Using COSMO-CLM: Effects on Extreme Values and Climate Change Signal. Theor. Appl. Clim. 2013, 114, 511–529. [Google Scholar] [CrossRef]
- Kim, D.; Kwon, H.-H.; Lee, S.-O.; Kim, S. Regionalization of the Modified Bartlett–Lewis Rectangular Pulse Stochastic Rainfall Model across the Korean Peninsula. J. Hydro-Environ. Res. 2016, 11, 123–137. [Google Scholar] [CrossRef]
- Ayugi, B.O.; Chung, E.-S.; Zhu, H.; Ogega, O.M.; Babousmail, H.; Ongoma, V. Projected Changes in Extreme Climate Events over Africa under 1.5 °C, 2.0 °C and 3.0 °C Global Warming Levels Based on CMIP6 Projections. Atmos. Res. 2023, 292, 106872. [Google Scholar] [CrossRef]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Verbist, K.M.J. Bias Adjustment of Satellite-Based Precipitation Estimation Using Gauge Observations: A Case Study in Chile. J. Geophys. Res. Atmos. 2016, 121, 3790–3806. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011; ISBN 978-0-12-385023-2. [Google Scholar]
- Piani, C.; Weedon, G.P.; Best, M.; Gomes, S.M.; Viterbo, P.; Hagemann, S.; Haerter, J.O. Statistical Bias Correction of Global Simulated Daily Precipitation and Temperature for the Application of Hydrological Models. J. Hydrol. 2010, 395, 199–215. [Google Scholar] [CrossRef]
- Haile, A.T.; Rientjes, T.; Gieske, A.; Gebremichael, M. Rainfall Variability over Mountainous and Adjacent Lake Areas: The Case of Lake Tana Basin at the Source of the Blue Nile River. J. Appl. Meteorol. Clim. 2009, 48, 1696–1717. [Google Scholar] [CrossRef]
- Bhatti, H.A.; Rientjes, T.; Haile, A.T.; Habib, E.; Verhoef, W. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data. Sensors 2016, 16, 884. [Google Scholar] [CrossRef]
- Lèye, B.; Zouré, C.O.; Yonaba, R.; Karambiri, H. Water Resources in the Sahel and Adaptation of Agriculture to Climate Change: Burkina Faso. In Climate Change and Water Resources in Africa: Perspectives and Solutions Towards an Imminent Water Crisis; Diop, S., Scheren, P., Niang, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 309–331. ISBN 978-3-030-61225-2. [Google Scholar]
- Bilali, H.E. Climate Change and Agriculture in Burkina Faso. J. Arid. Agric. 2021, 7, 22–47. [Google Scholar] [CrossRef]
- Verdin, A.; Funk, C.; Rajagopalan, B.; Kleiber, W. Kriging and Local Polynomial Methods for Blending Satellite-Derived and Gauge Precipitation Estimates to Support Hydrologic Early Warning Systems. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2552–2562. [Google Scholar] [CrossRef]
- Mitra, A.K.; Bohra, A.K.; Rajeevan, M.N.; Krishnamurti, T.N. Daily Indian Precipitation Analysis Formed from a Merge of Rain-Gauge Data with the TRMM TMPA Satellite-Derived Rainfall Estimates. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 265–279. [Google Scholar] [CrossRef]
- Kim, B.S.; Hong, J.B.; Kim, H.S.; Yoon, S.Y. Combining Radar and Rain Gauge Rainfall Estimates for Flood Forecasting Using Conditional Merging Method. In World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 1–16. [Google Scholar] [CrossRef]
- Xie, P.; Xiong, A.-Y. A Conceptual Model for Constructing High-Resolution Gauge-Satellite Merged Precipitation Analyses. J. Geophys. Res. Atmos. 2011, 116, D21106. [Google Scholar] [CrossRef]
- Vila, D.A.; de Goncalves, L.G.G.; Toll, D.L.; Rozante, J.R. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimates over Continental South America. J. Hydrometeorol. 2009, 10, 533–543. [Google Scholar] [CrossRef]
- Pulkkinen, S.; Koistinen, J.; Kuitunen, T. Gauge-Radar Adjustment by Using Multivariate Kernel Regression and Spatiotemporal Kriging. 2014. Available online: https://www.researchgate.net/profile/Seppo-Pulkkinen-2/publication/270100233_ERAD_extended_abstract/links/549fe5c90cf257a635fe8e0f/ERAD-extended-abstract.pdf (accessed on 12 October 2024).
- Rockström, J.; Falkenmark, M. Agriculture: Increase Water Harvesting in Africa. Nature 2015, 519, 283–285. [Google Scholar] [CrossRef]
Statistical Metrics | Equation | Optimum Value |
---|---|---|
Root-mean-square error | 0 | |
Mean absolute error | 0 | |
Pearson’s correlation | 0 | |
Bias | 1 | |
Probability of Detection (POD) | 1 | |
The False Alarm Ratio (FAR) | 0 |
Metrics | TAMSAT Uncorrected | EQM | TSV | EQM Improvement (%) | TSV Improvement (%) |
---|---|---|---|---|---|
R2 | 0.53 | 0.76 | 0.55 | 19.40 | 1.00 |
Bias | 0.88 | 0.97 | 0.93 | 10.30 | 5.70 |
ME | −0.30 | −0.08 | −0.17 | 72.30 | 43.3 |
RMSE | 26.49 | 25.71 | 26.49 | 3.00 | 0.03 |
POD | 0.85 | 0.86 | 0.85 | 1.30 | 0.10 |
FAR | 0.60 | 0.59 | 0.58 | 2.30 | 3.60 |
Metrics | TAMSAT Uncorrected | EQM | TSV | EQM Improvement (%) | TSV Improvement (%) |
---|---|---|---|---|---|
R2 | 0.004 | 0.406 | 0.002 | >100 | 50 |
Bias | 0.726 | 0.883 | 0.808 | 26.63 | 11.3 |
ME | −3.710 | −1.580 | −2.597 | 57.41 | 30.0 |
RMSE | 9.521 | 6.011 | 9.443 | 36.87 | 0.81 |
Metrics | TAMSAT Uncorrected | Bias Corrected (Unmerged) | Merged Dataset | Final Improvements (%) |
---|---|---|---|---|
R2 | 0.53 | 0.76 | 0.97 | 83.02 |
Bias | 0.88 | 0.97 | 0.98 | 11.36 |
ME | −0.30 | −0.08 | 0.01 | 96.67 |
RMSE | 26.49 | 25.71 | 1.18 | 95.54 |
POD | 0.85 | 0.86 | 0.99 | 16.47 |
FAR | 0.60 | 0.59 | 0.01 | 98.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waongo, M.; Garba, J.N.; Diasso, U.J.; Sawadogo, W.; Sawadogo, W.L.; Daho, T. A Merging Approach for Improving the Quality of Gridded Precipitation Datasets over Burkina Faso. Climate 2024, 12, 226. https://doi.org/10.3390/cli12120226
Waongo M, Garba JN, Diasso UJ, Sawadogo W, Sawadogo WL, Daho T. A Merging Approach for Improving the Quality of Gridded Precipitation Datasets over Burkina Faso. Climate. 2024; 12(12):226. https://doi.org/10.3390/cli12120226
Chicago/Turabian StyleWaongo, Moussa, Juste Nabassebeguelogo Garba, Ulrich Jacques Diasso, Windmanagda Sawadogo, Wendyam Lazare Sawadogo, and Tizane Daho. 2024. "A Merging Approach for Improving the Quality of Gridded Precipitation Datasets over Burkina Faso" Climate 12, no. 12: 226. https://doi.org/10.3390/cli12120226
APA StyleWaongo, M., Garba, J. N., Diasso, U. J., Sawadogo, W., Sawadogo, W. L., & Daho, T. (2024). A Merging Approach for Improving the Quality of Gridded Precipitation Datasets over Burkina Faso. Climate, 12(12), 226. https://doi.org/10.3390/cli12120226