Mapping Methane—The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning
Abstract
:1. Introduction
2. Related Work
2.1. Satellite-Based Methane Monitoring
2.2. Application to the Canadian Dairy Sector
2.3. Artificial Intelligence in Emission Analysis
3. Materials and Methods
3.1. Data Collection and Integration
3.2. Data Collection Time Frame and Temporal Alignment
3.3. Data Processing and Analysis
3.4. Emissions Profiling and Trend Analysis
3.5. Predictive Analytics for Emission Reduction
4. Results
4.1. Correlation Analysis of Dairy Farm Factors
4.2. Correlation of Dairy Farm Factors with Methane Concentration
4.3. Performance Comparison of Machine Learning Models
4.4. Feature Importance in Predicting Methane Emissions
5. Discussion
5.1. Integration of Atmospheric Transport Models for Accurate Emission Estimates
5.2. Negative Correlation Between EBV for Protein Percentage and Methane Emissions
5.3. Management Factors Influencing Methane Emissions
5.4. Trade-Offs Between Management Practices
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Howarth, R. Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: Implications for policy. Energy Emiss. Control. Technol. 2015, 3, 45–54. [Google Scholar] [CrossRef]
- Jain, P. Greenhouse effect and climate change: Scientific basis and overview. Renew. Energy 1993, 3, 403–420. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Zhang, X.; Guo, C. Atmospheric remote sensing for anthropogenic methane emissions: Applications and research opportunities. Sci. Total. Environ. 2023, 893, 164701. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef]
- Wattiaux, M.; Uddin, M.; Letelier, P.; Jackson, R.; Larson, R. Invited Review: Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. Appl. Anim. Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Skytt, T.; Nielsen, S.N.; Jonsson, B.-G. Global warming potential and absolute global temperature change potential from carbon dioxide and methane fluxes as indicators of regional sustainability—A case study of Jämtland, Sweden. Ecol. Indic. 2020, 110. [Google Scholar] [CrossRef]
- Derwent, R.G. Global Warming Potential (GWP) for Methane: Monte Carlo Analysis of the Uncertainties in Global Tropospheric Model Predictions. Atmosphere 2020, 11, 486. [Google Scholar] [CrossRef]
- Ghahremanloo, M.; Choi, Y.; Singh, D. Deep learning bias correction of GEMS tropospheric NO2: A comparative validation of NO2 from GEMS and TROPOMI using Pandora observations. Environ. Int. 2024, 190, 108818. [Google Scholar] [CrossRef]
- Tongwane, M.I.; Moeletsi, M.E. Provincial cattle carbon emissions from enteric fermentation and manure management in South Africa. Environ. Res. 2021, 195, 110833. [Google Scholar] [CrossRef]
- Vörösmarty, G.; Dobos, I. Green purchasing frameworks considering firm size: A multicollinearity analysis using variance inflation factor. Supply Chain Forum Int. J. 2020, 21, 290–301. [Google Scholar] [CrossRef]
- Grzybowski, P.T.; Markowicz, K.M.; Musiał, J.P. Estimations of the Ground-Level NO2 Concentrations Based on the Sentinel-5P NO2 Tropospheric Column Number Density Product. Remote. Sens. 2023, 15, 378. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Zhang, W.-F.; Dou, Z.-X.; He, P.; Ju, X.-T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.-L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef]
- Zou, M.; Xiong, X.; Wu, Z.; Li, S.; Zhang, Y.; Chen, L. Increase of Atmospheric Methane Observed from Space-Borne and Ground-Based Measurements. Remote. Sens. 2019, 11, 964. [Google Scholar] [CrossRef]
- Schuit, B.J.; Maasakkers, J.D.; Bijl, P.; Mahapatra, G.; Berg, A.-W.v.D.; Pandey, S.; Lorente, A.; Borsdorff, T.; Houweling, S.; Varon, D.J.; et al. Automated detection and monitoring of methane super-emitters using satellite data. Atmos. Meas. Tech. 2023, 23, 9071–9098. [Google Scholar] [CrossRef]
- Joyce, P.; Villena, C.R.; Huang, Y.; Webb, A.; Gloor, M.; Wagner, F.H.; Chipperfield, M.P.; Guilló, R.B.; Wilson, C.; Boesch, H. Using a deep neural network to detect methane point sources and quantify emissions from PRISMA hyperspectral satellite images. Atmos. Meas. Tech. 2023, 16, 2627–2640. [Google Scholar] [CrossRef]
- Janardanan, R.; Maksyutov, S.; Tsuruta, A.; Wang, F.; Tiwari, Y.K.; Valsala, V.; Ito, A.; Yoshida, Y.; Kaiser, J.W.; Janssens-Maenhout, G.; et al. Country-Scale Analysis of Methane Emissions with a High-Resolution Inverse Model Using GOSAT and Surface Observations. Remote. Sens. 2020, 12, 375. [Google Scholar] [CrossRef]
- Fan, L.; Wan, Y.; Dai, Y. Development of a Multi-Source Satellite Fusion Method for XCH4 Product Generation in Oil and Gas Production Areas. Appl. Sci. 2024, 14, 11100. [Google Scholar] [CrossRef]
- Vanselow, S.; Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Boesch, H.; Burrows, J.P. Automated detection of regions with persistently enhanced methane concentrations using Sentinel-5 Precursor satellite data. Atmos. Meas. Tech. 2024, 24, 10441–10473. [Google Scholar] [CrossRef]
- Pramod, A.; Naicker, H.S.; Tyagi, A.K. Machine learning and deep learning: Open issues and future research directions for the next 10 years. In Computational Analysis and Deep Learning for Medical Care: Principles, Methods, and Applications, 18th ed.; Tyagi, A.K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar] [CrossRef]
- Guan, K.; Jin, Z.; Peng, B.; Tang, J.; DeLucia, E.H.; West, P.C.; Jiang, C.; Wang, S.; Kim, T.; Zhou, W.; et al. A scalable framework for quantifying field-level agricultural carbon outcomes. Earth-Science Rev. 2023, 243. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, W.; Guan, K.; Peng, B.; Xu, S.; Tang, J.; Zhu, Q.; Till, J.; Jia, X.; Jiang, C.; et al. Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nat. Commun. 2024, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Landgraf, J.; Detmers, R.; Borsdorff, T.; de Brugh, J.A.; Aben, I.; Butz, A.; Hasekamp, O. Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophys. Res. Lett. 2018, 45, 3682–3689. [Google Scholar] [CrossRef]
- Jacob, D.J.; Turner, A.J.; Maasakkers, J.D.; Sheng, J.; Sun, K.; Liu, X.; Chance, K.; Aben, I.; McKeever, J.; Frankenberg, C. Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmos. Meas. Tech. 2016, 16, 14371–14396. [Google Scholar] [CrossRef]
- Loew, A.; Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation practices for satellite-based Earth observation data across communities. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef]
- Saarela, M.; Jauhiainen, S. Comparison of feature importance measures as explanations for classification models. SN Appl. Sci. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Kherif, F.; Latypova, A. Principal component analysis. In Machine Learning; Elsevier: Amsterdam, The Netherlands, 2020; pp. 209–225. [Google Scholar] [CrossRef]
- Shetty, S.; Schneider, P.; Stebel, K.; Hamer, P.D.; Kylling, A.; Berntsen, T.K. Estimating surface NO2 concentrations over Europe using Sentinel-5P TROPOMI observations and Machine Learning. Remote. Sens. Environ. 2024, 312. [Google Scholar] [CrossRef]
- Bi, H.; Neethirajan, S. Satellite Data and Machine Learning for Benchmarking Methane Concentrations in the Canadian Dairy Industry. Sustainability 2024, 16, 10400. [Google Scholar] [CrossRef]
- Barré, J.; Aben, I.; Agustí-Panareda, A.; Balsamo, G.; Bousserez, N.; Dueben, P.; Engelen, R.; Inness, A.; Lorente, A.; McNorton, J.; et al. Systematic detection of local CH4 anomalies by combining satellite measurements with high-resolution forecasts. Atmos. Meas. Tech. 2021, 21, 5117–5136. [Google Scholar] [CrossRef]
- Parmar, M.; Vaishya, A.; Ojha, N.; Pandya, M.R.; Girach, I.A. Addressing Observational Gaps in Aerosol Parameters using Machine Learning: Implications to Aerosol Radiative Forcing. Atmos. Environ. 2024, 333, 120661. [Google Scholar] [CrossRef]
- Balasus, N.; Jacob, D.J.; Lorente, A.; Maasakkers, J.D.; Parker, R.J.; Boesch, H.; Chen, Z.; Kelp, M.M.; Nesser, H.; Varon, D.J. A blended TROPOMI+GOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases. Atmos. Meas. Tech. 2023, 16, 3787–3807. [Google Scholar] [CrossRef]
- Kort, E.A.; Frankenberg, C.; Costigan, K.R.; Lindenmaier, R.; Dubey, M.K.; Wunch, D. Four corners: The largest US methane anomaly viewed from space. Geophys. Res. Lett. 2014, 41, 6898–6903. [Google Scholar] [CrossRef]
- A Rolph, K.; E Forest, C.; Ruark, M.D. The role of non-CO2 mitigation options within the dairy industry for pursuing climate change targets. Environ. Res. Lett. 2019, 14, 084039. [Google Scholar] [CrossRef]
- Cheng, L.; De Vos, J.; Zhao, P.; Yang, M.; Witlox, F. Examining non-linear built environment effects on elderly’s walking: A random forest approach. Transp. Res. Part D Transp. Environ. 2020, 88, 102552. [Google Scholar] [CrossRef]
- Cui, F.; Kim, M.; Park, C.; Kim, D.; Mo, K.; Kim, M. Application of principal component analysis (PCA) to the assessment of parameter correlations in the partial-nitrification process using aerobic granular sludge. J. Environ. Manag. 2021, 288, 112408. [Google Scholar] [CrossRef]
- Feng, X.; Lin, H.; Fu, T.-M.; Sulprizio, M.P.; Zhuang, J.; Jacob, D.J.; Tian, H.; Ma, Y.; Zhang, L.; Wang, X.; et al. WRF-GC (v2.0): Online two-way coupling of WRF (v3.9.1.1) and GEOS-Chem (v12.7.2) for modeling regional atmospheric chemistry–meteorology interactions. Geosci. Model Dev. 2021, 14, 3741–3768. [Google Scholar] [CrossRef]
- Maazallahi, H.; Fernandez, J.M.; Menoud, M.; Zavala-Araiza, D.; Weller, Z.D.; Schwietzke, S.; von Fischer, J.C.; van der Gon, H.D.; Röckmann, T. Methane mapping, emission quantification, and attribution in two European cities: Utrecht (NL) and Hamburg (DE). Atmos. Meas. Tech. 2020, 20, 14717–14740. [Google Scholar] [CrossRef]
- Santos, R.; Costa, A.A.; Silvestre, J.D.; Pyl, L. Development of a BIM-based Environmental and Economic Life Cycle Assessment tool. J. Clean. Prod. 2020, 265, 121705. [Google Scholar] [CrossRef]
- Viggiano, M.; Busetto, L.; Cimini, D.; Di Paola, F.; Geraldi, E.; Ranghetti, L.; Ricciardelli, E.; Romano, F. A new spatial modeling and interpolation approach for high-resolution temperature maps combining reanalysis data and ground measurements. Agric. For. Meteorol. 2019, 276–277, 107590. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty years of research on rumen methanogenesis: Lessons learned and future challenges for mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef]
- Firkins, J.; Mitchell, K. Invited review: Rumen modifiers in today’s dairy rations. J. Dairy Sci. 2023, 106, 3053–3071. [Google Scholar] [CrossRef]
- Pitta, D.; Indugu, N.; Narayan, K.; Hennessy, M. Symposium review: Understanding the role of the rumen microbiome in enteric methane mitigation and productivity in dairy cows. J. Dairy Sci. 2022, 105, 8569–8585. [Google Scholar] [CrossRef] [PubMed]
- de Haas, Y.; Veerkamp, R.; de Jong, G.; Aldridge, M. Selective breeding as a mitigation tool for methane emissions from dairy cattle. Animal 2021, 15, 100294. [Google Scholar] [CrossRef] [PubMed]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed]
- Min, B.-R.; Lee, S.; Jung, H.; Miller, D.N.; Chen, R. Enteric Methane Emissions and Animal Performance in Dairy and Beef Cattle Production: Strategies, Opportunities, and Impact of Reducing Emissions. Animals 2022, 12, 948. [Google Scholar] [CrossRef]
- Bilotto, F.; Recavarren, P.; Vibart, R.; Machado, C.F. Backgrounding strategy effects on farm productivity, profitability and greenhouse gas emissions of cow-calf systems in the Flooding Pampas of Argentina. Agric. Syst. 2019, 176. [Google Scholar] [CrossRef]
- Giamouri, E.; Zisis, F.; Mitsiopoulou, C.; Christodoulou, C.; Pappas, A.C.; Simitzis, P.E.; Kamilaris, C.; Galliou, F.; Manios, T.; Mavrommatis, A.; et al. Sustainable Strategies for Greenhouse Gas Emission Reduction in Small Ruminants Farming. Sustainability 2023, 15, 4118. [Google Scholar] [CrossRef]
- Mishra, S.; Anderson, K.; Miller, B.; Boyer, K.; Warren, A. Microgrid resilience: A holistic approach for assessing threats, identifying vulnerabilities, and designing corresponding mitigation strategies. Appl. Energy 2020, 264, 114726. [Google Scholar] [CrossRef]
- Hamedani, S.R.; Kuppens, T.; Malina, R.; Bocci, E.; Colantoni, A.; Villarini, M. Life Cycle Assessment and Environmental Valuation of Biochar Production: Two Case Studies in Belgium. Energies 2019, 12, 2166. [Google Scholar] [CrossRef]
- Yu, X.; Millet, D.B.; Henze, D.K.; Turner, A.J.; Delgado, A.L.; Bloom, A.A.; Sheng, J. A high-resolution satellite-based map of global methane emissions reveals missing wetland, fossil fuel, and monsoon sources. Atmos. Meas. Tech. 2023, 23, 3325–3346. [Google Scholar] [CrossRef]
Farm ID | Province | Number of Cows | Bedding Type | Milking Method |
---|---|---|---|---|
Farm 1 | New Brunswick | 115 | Free stall barn, Wood shavings | Herringbone milking system |
Farm 2 | New Brunswick | 250 | Free stall barn, Bedded on sand | Double 12 milking parlour |
Farm 3 | New Brunswick | 60 | Wood shaving | Voluntary Automatic Milking System (DeLaval VMS) |
Farm 4 | New Brunswick | 70 | Wood Shaving | Herringbone milking system |
Farm 5 | New Brunswick | 385 | Wood Shaving | Rotary Robotic Parlour |
Farm 6 | New Brunswick | 130 | Sand | Double 12 milking parlour |
Farm 7 | New Brunswick | 200 | Sand | Rotary Robotic Parlour |
Farm 8 | Nova Scotia | 100 | Wood Shaving | Voluntary Automatic Milking System |
Farm 9 | Nova Scotia | 65 | Sand | Herringbone milking system |
Farm 10 | Nova Scotia | 85 | Sand | Voluntary Automatic Milking System |
Farm 11 | Prince Edward Island | 200 | Wood Shaving | Robotic Rotary Parlour |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, H.; Neethirajan, S. Mapping Methane—The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning. Climate 2024, 12, 223. https://doi.org/10.3390/cli12120223
Bi H, Neethirajan S. Mapping Methane—The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning. Climate. 2024; 12(12):223. https://doi.org/10.3390/cli12120223
Chicago/Turabian StyleBi, Hanqing, and Suresh Neethirajan. 2024. "Mapping Methane—The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning" Climate 12, no. 12: 223. https://doi.org/10.3390/cli12120223
APA StyleBi, H., & Neethirajan, S. (2024). Mapping Methane—The Impact of Dairy Farm Practices on Emissions Through Satellite Data and Machine Learning. Climate, 12(12), 223. https://doi.org/10.3390/cli12120223