The Impact of Ozone on Periodontal Cell Line Viability and Function
Abstract
:1. Introduction
1.1. Mechanisms of Ozone Action
1.2. The Multifaceted Mechanisms and Clinical Applications of Ozone Therapy in Periodontal Treatment
1.3. Periodontal Cell Line in Periodontal Disease
1.4. Effect of Ozone on Periodontal Cell Lines
1.5. Therapeutic Applications of Ozone in Periodontal Therapy
1.6. Therapeutic Applications of Ozone in Dentistry
1.6.1. Endodontic Treatment
1.6.2. Oral Surgery
1.6.3. Balancing Ozone Exposure in Therapeutic Applications
1.6.4. Controlled Dosage
1.6.5. Localized Application
1.6.6. Induction of Protective Cellular Responses
2. Challenges and Considerations
- Standardization of Dosage: One of the primary challenges with ozone therapy is determining the precise concentration and exposure time required for optimal effects on periodontal tissues. While lower ozone concentrations are associated with beneficial effects on cellular proliferation and antimicrobial activity, higher concentrations can be cytotoxic, causing damage to host tissues. Rigorous research is required to establish dosage parameters that balance therapeutic efficacy with cellular safety, ensuring reproducible and predictable results in clinical settings.
- Development of Effective Delivery Systems: To harness the benefits of ozone therapy, it is essential to design and develop advanced delivery systems that allow for precise, controlled, and targeted application. Effective delivery methods would ensure that ozone reaches specific areas within periodontal pockets or damaged tissues without impacting surrounding healthy structures. Various forms, such as gaseous ozone, ozonated water, and ozone oils, have been explored, yet more research is needed to identify the most efficient and practical application methods that maximize therapeutic impact while minimizing systemic exposure.
- Assessment of Long-term Effects: While short-term benefits of ozone therapy in periodontal treatment have been documented, there is a lack of extensive longitudinal studies that evaluate its long-term impact on periodontal tissues and overall oral health. Understanding the effects of repeated ozone applications on tissue integrity, cellular health, and periodontal stability is crucial to determining its safety and efficacy over extended periods. Long-term studies will provide insight into potential risks, cumulative effects, and the possibility of chronic tissue alterations or adaptive responses to ozone exposure.
3. Conclusions
Funding
Conflicts of Interest
References
- Könönen, E.; Gursoy, M.; Gursoy, U.K. Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J. Clin. Med. 2019, 8, 1135. [Google Scholar] [CrossRef] [PubMed]
- Łasica, A.; Golec, P.; Laskus, A.; Zalewska, M.; Gędaj, M.; Popowska, M. Periodontitis: Etiology, Conventional Treatments, and Emerging Bacteriophage and Predatory Bacteria Therapies. Front. Microbiol. 2024, 15, 1469414. [Google Scholar] [CrossRef] [PubMed]
- Isola, G.; Santonocito, S.; Lupi, S.M.; Polizzi, A.; Sclafani, R.; Patini, R.; Marchetti, E. Periodontal Health and Disease in the Context of Systemic Diseases. Mediat. Inflamm. 2023, 2023, 9720947. [Google Scholar] [CrossRef] [PubMed]
- Hashim, N.T.; Babiker, R.; Rahman, M.M.; Mohamed, R.; Priya, S.P.; Chaitanya, N.C.; Islam, M.S.; Gobara, B. Natural Bioactive Compounds in the Management of Periodontal Diseases: A Comprehensive Review. Molecules 2024, 29, 3044. [Google Scholar] [CrossRef]
- Munasur, S.L.; Turawa, E.B.; Chikte, U.M.E.; Musekiwa, A. Mechanical Debridement with Antibiotics in the Treatment of Chronic Periodontitis: Effect on Systemic Biomarkers—A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 5601. [Google Scholar] [CrossRef]
- Nwobodo, D.C.; Ugwu, M.C.; Anie, C.O.; Al-Ouqaili, M.T.S.; Ikem, J.C.; Victor, U.C.; Saki, M. Antibiotic Resistance: The Challenges and Some Emerging Strategies for Tackling a Global Menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- Serra, M.E.G.; Baeza-Noci, J.; Mendes Abdala, C.V.; Luvisotto, M.M.; Bertol, C.D.; Anzolin, A.P. The Role of Ozone Treatment as Integrative Medicine: An Evidence and Gap Map. Front. Public Health 2023, 10, 1112296. [Google Scholar] [CrossRef]
- Meenakshi, P.S.; Rajasekar, A. A Review on Ozone Therapy in Periodontitis. Bioinformation 2022, 18, 634. [Google Scholar] [CrossRef]
- Dengizek, S.E.; Serkan, D.; Abubekir, E.; Aysun Bay, K.; Onder, O.; Arife, C. Evaluating Clinical and Laboratory Effects of Ozone in Non-Surgical Periodontal Treatment: A Randomized Controlled Trial. J. Appl. Oral Sci. 2019, 27, e20180108. [Google Scholar] [CrossRef]
- El Meligy, O.A.; Elemam, N.M.; Talaat, I.M. Ozone Therapy in Medicine and Dentistry: A Review of the Literature. Dent. J. 2023, 11, 187. [Google Scholar] [CrossRef]
- Goswami, P.; Sharma, K.; Maiti, N.; Yadav, S.; Verma, V.; Puthenkandathil, R. Ozone: An Adjunct in Dental Treatment. J. Pharm. Bioallied Sci. 2024, 16, S2–S4. [Google Scholar] [CrossRef] [PubMed]
- Russo, C.; Curcio, G.; Graziani, A.; Mencacci, A.; Pietrella, D. Antibiofilm, Anti-Inflammatory, and Regenerative Properties of a New Stable Ozone-Gel Formulation. Pharmaceutics 2024, 16, 1580. [Google Scholar] [CrossRef] [PubMed]
- Veneri, F.; Filippini, T.; Consolo, U.; Vinceti, M.; Generali, L. Ozone Therapy in Dentistry: An Overview of the Biological Mechanisms Involved. Biomed. Rep. 2024, 21, 115. [Google Scholar] [CrossRef]
- Marchesan, J.T.; Scanlon, C.S.; Soehren, S.; Matsuo, M.; Kapila, Y.L. Implications of Cultured Periodontal Ligament Cells for the Clinical and Experimental Setting: A Review. Arch. Oral Biol. 2011, 56, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.L.; Brown, M.A.; Reynolds, M.M. Cell-Based Methods for Determination of Efficacy for Candidate Therapeutics in the Clinical Management of Cancer. Diseases 2018, 6, 85. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Inchingolo, A.D.; Nardelli, P.; Latini, G.; Trilli, I.; Ferrante, L.; Malcangi, G.; Palermo, A.; Inchingolo, F.; Dipalma, G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J. Funct. Biomater. 2024, 15, 308. [Google Scholar] [CrossRef]
- Swanson, W.B.; Yao, Y.; Mishina, Y. Novel Approaches for Periodontal Tissue Engineering. Genesis 2022, 60, e23499. [Google Scholar] [CrossRef]
- Medeiros Cardoso, J.E.; Ervolino, E.; Miyasawa, E.M.; Theodoro, L.H.; Padovan, L.E.M.; Pereira, E.L.; de Molon, R.S.; Garcia, V.G. Unveiling the Therapeutic Potential of Systemic Ozone on Skin Wound Repair: Clinical, Histological, and Immunohistochemical Study in Rats. Biomed. Res. Int. 2024, 2024, 6623114. [Google Scholar] [CrossRef]
- Travagli, V.; Iorio, E. The Biological and Molecular Action of Ozone and Its Derivatives: State-of-the-Art, Enhanced Scenarios, and Quality Insights. Int. J. Mol. Sci. 2023, 24, 8465. [Google Scholar] [CrossRef]
- Alsakr, A.; Gufran, K.; Alqahtani, A.S.; Alasqah, M.; Alnufaiy, B.; Alzahrani, H.G.; Alahmari, A.A.; Alhumaidani, F.K.; Alhumaidani, R.K.; Althobiti, M.J. Ozone Therapy as an Adjuvant in the Treatment of Periodontitis. J. Clin. Med. 2023, 12, 7078. [Google Scholar] [CrossRef]
- Uraz, A.; Karaduman, B.; Isler, S.Ç.; Gönen, S.; Çetiner, D. Ozone Application as Adjunctive Therapy in Chronic Periodontitis: Clinical, Microbiological, and Biochemical Aspects. J. Dent. Sci. 2019, 14, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Macleod, J.; Blaxland, J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety, and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023, 12, 814. [Google Scholar] [CrossRef] [PubMed]
- Rangel, K.; Cabral, F.O.; Lechuga, G.C.; Carvalho, J.P.R.S.; Villas-Bôas, M.H.S.; Midlej, V.; De-Simone, S.G. Detrimental Effect of Ozone on Pathogenic Bacteria. Microorganisms 2021, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Breidablik, H.J.; Lysebo, D.E.; Johannessen, L.; Skare, Å.; Andersen, J.R.; Kleiven, O. Effects of Hand Disinfection with Alcohol Hand Rub, Ozonized Water, or Soap and Water: Time for Reconsideration? J. Hosp. Infect. 2020, 105, 213–215. [Google Scholar] [CrossRef]
- Mohammad, Z.; Kalbasi-Ashtari, A.; Riskowski, G.; Juneja, V.; Castillo, A. Inactivation of Salmonella and Shiga Toxin-Producing Escherichia coli (S.T.E.C.) from the Surface of Alfalfa Seeds and Sprouts by Combined Antimicrobial Treatments Using Ozone and Electrolyzed Water. Food Res. Int. 2020, 136, 109488. [Google Scholar] [CrossRef]
- De Sire, A.; Marotta, N.; Ferrillo, M.; Agostini, F.; Sconza, C.; Lippi, L.; Respizzi, S.; Giudice, A.; Invernizzi, M.; Ammendolia, A. Oxygen-Ozone Therapy for Reducing Pro-Inflammatory Cytokine Serum Levels in Musculoskeletal and Temporomandibular Disorders: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 2528. [Google Scholar] [CrossRef]
- Milillo, C.; Falcone, L.; Di Carlo, P.; Aruffo, E.; Del Boccio, P.; Cufaro, M.C.; Patruno, A.; Pesce, M.; Ballerini, P. Ozone Effect on the Inflammatory and Proteomic Profile of Human Macrophages and Airway Epithelial Cells. Respir. Physiol. Neurobiol. 2023, 307, 103979. [Google Scholar] [CrossRef]
- Sagai, M.; Bocci, V. Mechanisms of Action Involved in Ozone Therapy: Is Healing Induced via a Mild Oxidative Stress? Med. Gas Res. 2011, 1, 29. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids, and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Panebianco, F.; Rubiola, S.; Di Ciccio, P.A. The Use of Ozone as an Eco-Friendly Strategy against Microbial Biofilm in Dairy Manufacturing Plants: A Review. Microorganisms 2022, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Galiè, M.; Covi, V.; Tabaracci, G.; Malatesta, M. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int. J. Mol. Sci. 2019, 20, 4009. [Google Scholar] [CrossRef] [PubMed]
- Franzini, M.; Valdenassi, L.; Pandolfi, S.; Tirelli, U.; Ricevuti, G.; Chirumbolo, S. The Role of Ozone as an Nrf2-Keap1-ARE Activator in the Anti-Microbial Activity and Immunity Modulation of Infected Wounds. Antioxidants 2023, 12, 1985. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of Oxidative Stress, Cellular Communication, and Signaling Pathways in Cancer. Cell Commun. Signal. 2024, 22, 7. [Google Scholar] [CrossRef]
- Al-Hegelan, M.; Tighe, R.M.; Castillo, C.; Hollingsworth, J.W. Ambient Ozone and Pulmonary Innate Immunity. Immunol. Res. 2011, 49, 173–191. [Google Scholar] [CrossRef]
- Shafqat, A.; Khan, J.A.; Alkachem, A.Y.; Sabur, H.; Alkattan, K.; Yaqinuddin, A.; Sing, G.K. How Neutrophils Shape the Immune Response: Reassessing Their Multifaceted Role in Health and Disease. Int. J. Mol. Sci. 2023, 24, 17583. [Google Scholar] [CrossRef]
- Cenci, A.; Macchia, I.; La Sorsa, V.; Sbarigia, C.; Di Donna, V.; Pietraforte, D. Mechanisms of Action of Ozone Therapy in Emerging Viral Diseases: Immunomodulatory Effects and Therapeutic Advantages with Reference to SARS-CoV-2. Front. Microbiol. 2022, 13, 871645. [Google Scholar] [CrossRef]
- Rivas-Arancibia, S.; Hernández-Orozco, E.; Rodríguez-Martínez, E.; Valdés-Fuentes, M.; Cornejo-Trejo, V.; Pérez-Pacheco, N.; Dorado-Martínez, C.; Zequeida-Carmona, D.; Espinosa-Caleti, I. Ozone Pollution, Oxidative Stress, Regulatory T Cells, and Antioxidants. Antioxidants 2022, 11, 1553. [Google Scholar] [CrossRef]
- Li, Z.; Tighe, R.M.; Feng, F.; Ledford, J.G.; Hollingsworth, J.W. Genes of Innate Immunity and the Biological Response to Inhaled Ozone. J. Biochem. Mol. Toxicol. 2013, 27, 3–16. [Google Scholar] [CrossRef]
- Valacchi, G.; Sticozzi, C.; Zanardi, I.; Belmonte, G.; Cervellati, F.; Bocci, V.; Travagli, V. Ozone Mediators Effect on “In Vitro” Scratch Wound Closure. Free Radic. Res. 2016, 50, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, A.; Bocci, V.; Acquaviva, A.; Belmonte, G.; Gardi, C.; Virgili, F.; Ciccoli, L.; Valacchi, G. NRF2 Activation Is Involved in Ozonated Human Serum Up-Regulation of HO-1 in Endothelial Cells. Toxicol. Appl. Pharmacol. 2013, 267, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Roche, L.; Riera-Romo, M.; Mesta, F.; Hernández-Matos, Y.; Barrios, J.M.; Martínez-Sánchez, G.; Al-Dalaien, S.M. Medical Ozone Promotes Nrf2 Phosphorylation Reducing Oxidative Stress and Pro-Inflammatory Cytokines in Multiple Sclerosis Patients. Eur. J. Pharmacol. 2017, 811, 148–154. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef]
- Tang, S.; Xu, B.; Li, J.; Zhong, M.; Hong, Z.; Zhao, W.; Zeng, T.; He, X. Ozone Induces BEL7402 Cell Apoptosis by Increasing Reactive Oxygen Species Production and Activating JNK. Ann. Transl. Med. 2021, 9, 1257. [Google Scholar] [CrossRef]
- Mustafa, M.; Ahmad, R.; Tantry, I.Q.; Ahmad, W.; Siddiqui, S.; Alam, M.; Abbas, K.; Hassan, M.I.; Habib, S.; Islam, S. Apoptosis: A Comprehensive Overview of Signaling Pathways, Morphological Changes, and Physiological Significance and Therapeutic Implications. Cells 2024, 13, 1838. [Google Scholar] [CrossRef]
- Xiao, W.; Tang, H.; Wu, M.; Liao, Y.; Li, K.; Li, L.; Xu, X. Ozone Oil Promotes Wound Healing by Increasing the Migration of Fibroblasts via PI3K/Akt/mTOR Signaling Pathway. Biosci. Rep. 2017, 37, BSR20170658. [Google Scholar] [CrossRef]
- Srikanth, A.; Sathish, M.; Sri Harsha, A.V. Application of Ozone in the Treatment of Periodontal Disease. J. Pharm. Bioallied Sci. 2013, 5, S89–S94. [Google Scholar] [CrossRef]
- Cisterna, B.; Costanzo, M.; Nodari, A.; Galiè, M.; Zanzoni, S.; Bernardi, P.; Covi, V.; Tabaracci, G.; Malatesta, M. Ozone Activates the Nrf2 Pathway and Improves Preservation of Explanted Adipose Tissue In Vitro. Antioxidants 2020, 9, 989. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, A.; Meng, W.; Wang, T.; Li, D.; Liu, Z.; Liu, H. Ozone Protects the Rat Lung from Ischemia-Reperfusion Injury by Attenuating NLRP3-Mediated Inflammation, Enhancing Nrf2 Antioxidant Activity, and Inhibiting Apoptosis. Eur. J. Pharmacol. 2018, 835, 82–93. [Google Scholar] [CrossRef]
- Ramirez-Peña, A.M.; Sánchez-Pérez, A.; Campos-Aranda, M.; Hidalgo-Tallón, F.J. Ozone in Patients with Periodontitis: A Clinical and Microbiological Study. J. Clin. Med. 2022, 11, 2946. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Zou, P.; Cui, Y.; Quan, L.; Gao, C.; Li, Z.; Gong, W.; Yang, M. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems. Pharmaceutics 2023, 15, 1188. [Google Scholar] [CrossRef] [PubMed]
- Chirumbolo, S.; Valdenassi, L.; Simonetti, V.; Bertossi, D.; Ricevuti, G.; Franzini, M.; Pandolfi, S. Insights on the Mechanisms of Action of Ozone in the Medical Therapy Against COVID-19. Int. Immunopharmacol. 2021, 96, 107777. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Luo, S.; Lu, C.; Jiang, X.; Chen, K.; Deng, J.; Ma, S.; Li, Z. The Role of Nrf2 in Periodontal Disease by Regulating Lipid Peroxidation, Inflammation, and Apoptosis. Front. Endocrinol. 2022, 13, 963451. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Wielento, A.; Lagosz-Cwik, K.B.; Potempa, J.; Grabiec, A.M. The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. J. Dent. Res. 2023, 102, 489–496. [Google Scholar] [CrossRef]
- Bosshardt, D.D. Are Cementoblasts a Subpopulation of Osteoblasts or a Unique Phenotype? J. Dent. Res. 2005, 84, 390–406. [Google Scholar] [CrossRef]
- Omi, M.; Mishina, Y. Roles of Osteoclasts in Alveolar Bone Remodeling. Genesis 2022, 60, e23490. [Google Scholar] [CrossRef]
- Bharuka, T.; Reche, A. Advancements in Periodontal Regeneration: A Comprehensive Review of Stem Cell Therapy. Cureus 2024, 16, e54115. [Google Scholar] [CrossRef]
- Naruishi, K. Biological Roles of Fibroblasts in Periodontal Diseases. Cells 2022, 11, 3345. [Google Scholar] [CrossRef]
- Wen, S.; Zheng, X.; Yin, W.; Liu, Y.; Wang, R.; Zhao, Y.; Liu, Z.; Li, C.; Zeng, J.; Rong, M. Dental Stem Cell Dynamics in Periodontal Ligament Regeneration: From Mechanism to Application. Stem Cell Res. Ther. 2024, 15, 389. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, X.; Li, J.; Yue, Y.; Li, J.; Wang, M.; Wei, N.; Hao, L. Mechanisms of Mechanical Force in Periodontal Homeostasis: A Review. Front. Immunol. 2024, 15, 1438726. [Google Scholar] [CrossRef] [PubMed]
- Na Nan, D.; Klincumhom, N.; Trachoo, V.; Everts, V.; Ferreira, J.N.; Osathanon, T.; Pavasant, P. Periostin-Integrin Interaction Regulates Force-Induced TGF-β1 and α-SMA Expression by hPDLSCs. Oral Dis. 2023, 30, 2570–2579. [Google Scholar] [CrossRef]
- Iwayama, T.; Sakashita, H.; Takedachi, M.; Murakami, S. Periodontal Tissue Stem Cells and Mesenchymal Stem Cells in the Periodontal Ligament. Jpn. Dent. Sci. Rev. 2022, 58, 172–178. [Google Scholar] [CrossRef]
- Alves, L.; Machado, V.; Botelho, J.; Mendes, J.J.; Cabral, J.M.S.; da Silva, C.L.; Carvalho, M.S. Enhanced Proliferative and Osteogenic Potential of Periodontal Ligament Stromal Cells. Biomedicines 2023, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Zhao, N.; Wang, L.; Yu, M.; Liu, H.; Song, A.; Huang, J.; Wang, G.; Yang, P. Bone Repair by Periodontal Ligament Stem Cell-Seeded Nanohydroxyapatite-Chitosan Scaffold. Int. J. Nanomed. 2012, 7, 5405–5414. [Google Scholar] [CrossRef] [PubMed]
- Albougha, M.S.; Sugii, H.; Adachi, O.; Mardini, B.; Soeno, S.; Hamano, S.; Hasegawa, D.; Yoshida, S.; Itoyama, T.; Obata, J.; et al. Exosomes from Human Periodontal Ligament Stem Cells Promote Differentiation of Osteoblast-like Cells and Bone Healing in Rat Calvarial Bone. Biomolecules 2024, 14, 1455. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Jeyaraman, N.; Ramasubramanian, S.; Balaji, S.; Nallakumarasamy, A.; Patro, B.P.; Migliorini, F. Ozone Therapy in Musculoskeletal Medicine: A Comprehensive Review. Eur. J. Med. Res. 2024, 29, 398. [Google Scholar] [CrossRef]
- Choi, B.; Choi, J.-H.; Kang, T.-H.; Lee, S.-J.; Kim, G.-C. Enhancement of Osteoblast Differentiation Using No-Ozone Cold Plasma on Human Periodontal Ligament Cells. Biomedicines 2021, 9, 890. [Google Scholar] [CrossRef]
- Pasalkar, L.; Chavan, M.; Kharat, D.-A.; Sanap, A.; Kheur, S.; Bhonde, R. Gaseous Ozone Treatment Augments Chondrogenic and Osteogenic Differentiation but Impairs Adipogenic Differentiation in Human Dental Pulp Stem Cells In Vitro. J. Orofac. Sci. 2022, 14, 36–44. [Google Scholar] [CrossRef]
- Viebahn-Haensler, R.; León Fernández, O.S. Ozone in Medicine: The Low-Dose Ozone Concept and Its Basic Biochemical Mechanisms of Action in Chronic Inflammatory Diseases. Int. J. Mol. Sci. 2021, 22, 7890. [Google Scholar] [CrossRef] [PubMed]
- Clavo, B.; Rodríguez-Esparragón, F.; Rodríguez-Abreu, D.; Martínez-Sánchez, G.; Llontop, P.; Aguiar-Bujanda, D.; Fernández-Pérez, L.; Santana-Rodríguez, N. Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects. Antioxidants 2019, 8, 588. [Google Scholar] [CrossRef] [PubMed]
- Takizawa, F.; Domon, H.; Hiyoshi, T.; Tamura, H.; Shimizu, K.; Maekawa, T.; Tabeta, K.; Ushida, A.; Terao, Y. Ozone Ultrafine Bubble Water Exhibits Bactericidal Activity Against Pathogenic Bacteria in the Oral Cavity and Upper Airway and Disinfects Contaminated Healthcare Equipment. PLoS ONE 2023, 18, e0284115. [Google Scholar] [CrossRef]
- Failor, K.C.; Silver, B.; Yu, W.; Heindl, J.E. Biofilm Disruption and Bactericidal Activity of Aqueous Ozone Coupled with Ultrasonic Dental Scaling. JADA Found. Sci. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Palma, P.V.; Cunha, R.O.; Leite, I.S.G. Effectiveness of Ozone Therapy in the Treatment of Periodontal Diseases: A Systematic Review. RGO Rev. Gaúcha Odontol. 2023, 71, e20230004. [Google Scholar] [CrossRef]
- Saeed, S.S.M.; Afify, O.; El-Moula, E.M.; El-ZamaranY, E.A. Clinical and Microbiological Evaluation of Oleozone Gel in the Treatment of Chronic Periodontitis. EC Dent. Sci. 2017, 12, 227–236. [Google Scholar]
- Huth, K.C.; Quirling, M.; Lenzke, S.; Paschos, E.; Kamereck, K.; Brand, K.; Hickel, R.; Ilie, N. Effectiveness of Ozone Against Periodontal Pathogenic Microorganisms. Eur. J. Oral Sci. 2011, 119, 204–210. [Google Scholar] [CrossRef]
- Bocci, V.A. Scientific and Medical Aspects of Ozone Therapy: State of the Art. Arch. Med. Res. 2006, 37, 425–435. [Google Scholar] [CrossRef]
- Giuliani, G.; Ricevuti, G.; Galoforo, A.; Franzini, M. Microbiological Aspects of Ozone: Bactericidal Activity and Antibiotic/Antimicrobial Resistance in Bacterial Strains Treated with Ozone. Ozone Ther. 2018, 3, 7971. [Google Scholar] [CrossRef]
- Puletic, M.; Velikic, G.; Maric, D.M.; Supic, G.; Maric, D.L.; Radovic, N.; Avramov, S.; Vojvodic, D. Clinical Efficacy of Extracellular Vesicle Therapy in Periodontitis: Reduced Inflammation and Enhanced Regeneration. Int. J. Mol. Sci. 2024, 25, 5753. [Google Scholar] [CrossRef]
- Nambiar, S.; Malothu, S.; Karmakar, S.; Varkey, A.; Chandra, D.; Chava, V.K. Comparison of Ozonated Olive Oil and Chlorhexidine Gel as an Adjunct to Nonsurgical Periodontal Therapy for the Treatment of Chronic Periodontitis: A Randomized Controlled Clinical Trial. J. Pharm. Bioallied Sci. 2022, 14, S94–S98. [Google Scholar] [CrossRef] [PubMed]
- Tetè, G.; D’Amicantonio, T.; Polizzi, E. Efficacy of Ozone Therapy in Reducing Periodontal Disease. Materials 2023, 16, 2375. [Google Scholar] [CrossRef] [PubMed]
- Swimberghe, R.C.; Coenye, T.; De Moor, R.J.G.; Meire, M.A. Biofilm Model Systems for Root Canal Disinfection: A Literature Review. Int. Endod. J. 2019, 52, 604–628. [Google Scholar] [CrossRef] [PubMed]
- Case, P.D.; Bird, P.S.; Kahler, W.A.; George, R.; Walsh, L.J. Treatment of Root Canal Biofilms of Enterococcus faecalis with Ozone Gas and Passive Ultrasound Activation. J. Endod. 2012, 38, 523–526. [Google Scholar] [CrossRef]
- Huth, K.C.; Quirling, M.; Maier, S.; Kamereck, K.; Alkhayer, M.; Paschos, E.; Welsch, U.; Miethke, T.; Brand, K.; Hickel, R. Effectiveness of ozone against endodontopathogenic microorganisms in a root canal biofilm model. Int. Endod. J. 2009, 42, 3–13. [Google Scholar] [CrossRef]
- Bitter, K.; Vlassakids, A.; Niepel, M.; Hoedke, D.; Schulze, J.; Neumann, K.; Moter, A.; Noetzel, J. Effects of diode laser gaseous ozone and medical dressings on Enterococcus faecalis biofilms in the root canal ex vivo. Biomed. Res. Int. 2017, 2017, 6321850. [Google Scholar] [CrossRef]
- Sinha, N.; Asthana, G.; Parmar, G.; Langaliya, A.; Shah, J.; Kumbhar, A.; Singh, B. Evaluation of Ozone Therapy in Endodontic Treatment of Teeth with Necrotic Pulp and Apical Periodontitis: A Randomized. Clin. Trial. J. Endod. 2021, 47, 1820–1828. [Google Scholar] [CrossRef]
- Tonon, C.C.; Panariello, B.H.D.; Spolidorio, D.M.P.; Gossweiler, A.G.; Duarte, S.J. Antibiofilm Effect of Ozonized Physiological Saline Solution on Peri-Implant-Related Biofilm. Periodontology 2021, 92, 1151–1162. [Google Scholar] [CrossRef]
- Isler, S.C.; Unsal, B.; Soysal, F.; Ozcan, G.; Peker, E.; Karaca, I.R. The Effects of Ozone Therapy as an Adjunct to the Surgical Treatment of Peri-Implantitis. J. Periodontal Implant Sci. 2018, 48, 136–151. [Google Scholar] [CrossRef]
- Campanati, A.; De Blasio, S.; Giuliano, A.; Ganzetti, G.; Giuliodori, K.; Pecora, T.; Consales, V.; Minnetti, I.; Offidani, A. Topical Ozonated Oil versus Hyaluronic Gel for the Treatment of Partial- to Full-Thickness Second-Degree Burns: A Prospective, Comparative, Single-Blind, Non-Randomised, Controlled Clinical Trial. Burns 2013, 39, 1178–1183. [Google Scholar] [CrossRef]
- Solovăstru, L.G.; Stîncanu, A.; De Ascentii, A.; Capparé, G.; Mattana, P.; Vâţă, D. Randomized, Controlled Study of Innovative Spray Formulation Containing Ozonated Oil and α-Bisabolol in the Topical Treatment of Chronic Venous Leg Ulcers. Adv. Ski. Wound Care 2015, 28, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, C.I.; Cislaghi, E.; Mariani, L.; Maniezzo, M. Efficacy and Safety of Medical Ozone (O3) Delivered in Oil Suspension Applications for the Treatment of Osteonecrosis of the Jaw in Patients with Bone Metastases Treated with Bisphosphonates: Preliminary Results of a Phase I-II Study. Oral Oncol. 2011, 47, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Bocci, V.A.; Zanardi, I.; Travagli, V. Ozone Acting on Human Blood Yields a Hormetic Dose-Response Relationship. J. Transl. Med. 2011, 9, 66. [Google Scholar] [CrossRef] [PubMed]
- Bocci, V. Is It True That Ozone Is Always Toxic? The End of a Dogma. Toxicol. Appl. Pharmacol. 2006, 216, 493–504. [Google Scholar] [CrossRef]
- Deepthi, R.; Bilichodmath, S. Ozone Therapy in Periodontics: A Meta-Analysis. Contemp. Clin. Dent. 2020, 11, 108–115. [Google Scholar] [CrossRef]
- Barahim, A.A.; Shemais, N.; Mousa, A.; Darhous, M. Clinical and Radiographic Evaluation of Non-Surgical Therapy with and without Ozone Gel Application in Controlled Type 2 Diabetic Patients with Periodontitis: A Randomized Controlled Clinical Trial. BMC Oral Health 2024, 24, 1435. [Google Scholar] [CrossRef]
- Salve, A.; Ansari, S.; Gattani, D.; Kar, N.; Heda, P. Ozone—A Versatile Therapy in Implant Dentistry. J. Glob. Oral Health 2022, 5, 124–127. [Google Scholar] [CrossRef]
- Makeeva, M.K.; Daurova, F.Y.; Byakova, S.F.; Turkina, A.Y. Treatment of an Endo-Perio Lesion with Ozone Gas in a Patient with Aggressive Periodontitis: A Clinical Case Report and Literature Review. Clin. Cosmet. Investig. Dent. 2020, 12, 447–464. [Google Scholar] [CrossRef]
- Barczyk, I.; Masłyk, D.; Walczuk, N.; Kijak, K.; Skomro, P.; Gronwald, H.; Pawlak, M.; Rusińska, A.; Sadowska, N.; Gronwald, B.; et al. Potential Clinical Applications of Ozone Therapy in Dental Specialties—A Literature Review, Supported by Own Observations. Int. J. Environ. Res. Public Health 2023, 20, 2048. [Google Scholar] [CrossRef]
- Bondy, S.C. The Hormesis Concept: Strengths and Shortcomings. Biomolecules 2023, 13, 1512. [Google Scholar] [CrossRef]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef] [PubMed]
- Franzini, M.; Valdenassi, L.; Pandolfi, S.; Tirelli, U.; Ricevuti, G.; Simonetti, V.; Berretta, M.; Vaiano, F.; Chirumbolo, S. The Biological Activity of Medical Ozone in the Hormetic Range and the Role of Full Expertise Professionals. Front. Public Health 2022, 10, 979076. [Google Scholar] [CrossRef] [PubMed]
- Floare, A.D.; Scurtu, A.D.; Balean, O.I.; Chioran, D.; Buzatu, R.; Sava Rosianu, R.; Alexa, V.T.; Jumanca, D.; Rusu, L.-C.; Racea, R.C.; et al. The Biological Effects of Ozone Gas on Soft and Hard Dental Tissues and the Impact on Human Gingival Fibroblasts and Gingival Keratinocytes. Processes 2021, 9, 1978. [Google Scholar] [CrossRef]
Aspect | Prokaryotic Cells | Eukaryotic Cells |
---|---|---|
Targeted Structures | Cell membrane lipids, proteins, and DNA | Host cell signaling pathways, antioxidant systems, and growth factors |
Mechanism of Action | Lipid peroxidation, protein oxidation, nucleic acid damage | Activation of Nrf2 and MAPK pathways; modulation of cytokine and growth factor expression |
Antioxidant Defense | Limited antioxidant defenses; higher susceptibility to ROS | Robust antioxidant systems, including enzymes like superoxide dismutase and catalase |
Effects on Cell Survival | Disruption of cellular integrity, leading to cell lysis and death | Promotes cell survival via ERK pathway; induces controlled apoptosis via JNK and p38 pathways |
Effects on DNA | DNA damage through strand breaks and mutations; inhibits replication | Minimal DNA damage due to enhanced antioxidant response; protects genomic stability |
Resistance Mechanisms | Upregulation of oxidative stress defense genes in biofilm-associated pathogens | No significant resistance noted; mechanisms focus on repair and modulation |
Clinical Implications | Effective for biofilm disruption and microbial eradication; may require combination therapies to address resistance | Promotes tissue repair and regeneration; enhances host immune modulation |
Research Area | Applications | Potential Outcomes |
---|---|---|
Pathophysiological Mechanisms | Study cellular responses to bacterial infections, inflammation, and oxidative stress. | Identify therapeutic targets to halt or reverse periodontal disease progression. |
Therapeutic Development | Test new drugs and therapeutic strategies in vitro before animal models or clinical trials. | Improve drug safety and effectiveness for potential periodontal treatments. |
Tissue Engineering and Regeneration | Develop biocompatible scaffolds and biomaterials to support periodontal tissue regeneration. | Enhance tissue recovery and repair periodontal defects with innovative regenerative strategies. |
Genetic Studies | Investigate the roles of specific genes in periodontal health and disease. | Highlight genetic risk factors and develop gene therapies for periodontal disease management. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashim, N.T.; Babiker, R.; Dasnadi, S.P.; Islam, M.S.; Chaitanya, N.C.; Mohammed, R.; Farghal, N.S.; Gobara, B.; Rahman, M.M. The Impact of Ozone on Periodontal Cell Line Viability and Function. Curr. Issues Mol. Biol. 2025, 47, 72. https://doi.org/10.3390/cimb47020072
Hashim NT, Babiker R, Dasnadi SP, Islam MS, Chaitanya NC, Mohammed R, Farghal NS, Gobara B, Rahman MM. The Impact of Ozone on Periodontal Cell Line Viability and Function. Current Issues in Molecular Biology. 2025; 47(2):72. https://doi.org/10.3390/cimb47020072
Chicago/Turabian StyleHashim, Nada Tawfig, Rasha Babiker, Shahistha Parveen Dasnadi, Md Sofiqul Islam, Nallan CSK Chaitanya, Riham Mohammed, Nancy Soliman Farghal, Bakri Gobara, and Muhammed Mustahsen Rahman. 2025. "The Impact of Ozone on Periodontal Cell Line Viability and Function" Current Issues in Molecular Biology 47, no. 2: 72. https://doi.org/10.3390/cimb47020072
APA StyleHashim, N. T., Babiker, R., Dasnadi, S. P., Islam, M. S., Chaitanya, N. C., Mohammed, R., Farghal, N. S., Gobara, B., & Rahman, M. M. (2025). The Impact of Ozone on Periodontal Cell Line Viability and Function. Current Issues in Molecular Biology, 47(2), 72. https://doi.org/10.3390/cimb47020072