Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors
Simple Summary
Abstract
1. Introduction
2. Visualization of Vascular Structures with Skull Base Tumors
3. Visualization of Normal Anatomy of Cranial Nerves
4. Visualization of Cranial Nerves with Skull Base Tumors
4.1. Meningiomas
4.2. Schwannomas
5. Cranial Nerves Penetrating Skull Base Tumors
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anaizi, A.N.; Gantwerker, E.A.; Pensak, M.L.; Theodosopoulos, P.V. Facial Nerve Preservation Surgery for Koos Grade 3 and 4 Vestibular Schwannomas. Neurosurgery 2014, 75, 671–675. [Google Scholar] [CrossRef]
- Ichinose, T.; Goto, T.; Ishibashi, K.; Takami, T.; Ohata, K. The Role of Radical Microsurgical Resection in Multimodal Treatment for Skull Base Meningioma. J. Neurosurg. 2010, 113, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Scheer, M.; Simmermacher, S.; Prell, J.; Leisz, S.; Scheller, C.; Mawrin, C.; Strauss, C.; Rampp, S. Recurrences and Progression Following Microsurgery of Vestibular Schwannoma. Front. Surg. 2023, 10, 1216093. [Google Scholar] [CrossRef]
- Boari, N.; Gagliardi, F.; Cavalli, A.; Gemma, M.; Ferrari, L.; Riva, P.; Mortini, P. Skull Base Chordomas: Clinical Outcome in a Consecutive Series of 45 Patients with Long-Term Follow-up and Evaluation of Clinical and Biological Prognostic Factors. J. Neurosurg. 2016, 125, 450–460. [Google Scholar] [CrossRef]
- Jahangiri, A.; Chin, A.T.; Wagner, J.R.; Kunwar, S.; Ames, C.; Chou, D.; Barani, I.; Parsa, A.T.; McDermott, M.W.; Benet, A.; et al. Factors Predicting Recurrence After Resection of Clival Chordoma Using Variable Surgical Approaches and Radiation Modalities. Neurosurgery 2015, 76, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Borghei-Razavi, H.; Tomio, R.; Fereshtehnejad, S.-M.; Shibao, S.; Schick, U.; Toda, M.; Yoshida, K.; Kawase, T. Pathological Location of Cranial Nerves in Petroclival Lesions: How to Avoid Their Injury During Anterior Petrosal Approach. J. Neurol. Surg. B Skull Base 2016, 77, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Tomio, R.; Horiguchi, T.; Shibao, S.; Tamura, R.; Yoshida, K.; Kawase, T. Anterior Transpetrosal Approach and the Tumor Removal Rate, Postoperative Neurological Changes, and Complications: Experience in 274 Cases over 33 Years. J. Neurosurg. 2024, 141, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Ikawa, F.; Onishi, S.; Kolakshyapati, M.; Takeda, M.; Yamaguchi, S.; Ishifuro, M.; Akiyama, Y.; Morishige, M.; Kurisu, K. Preoperative Simulation of the Running Course of the Abducens Nerve in a Large Petroclival Meningioma: A Case Report and Literature Review. Neurosurg. Rev. 2017, 40, 339–343. [Google Scholar] [CrossRef]
- Lin, J.; Zhou, Z.; Guan, J.; Zhu, Y.; Liu, Y.; Yang, Z.; Lin, B.; Jiang, Y.; Quan, X.; Ke, Y.; et al. Using Three-Dimensional Printing to Create Individualized Cranial Nerve Models for Skull Base Tumor Surgery. World Neurosurg. 2018, 120, e142–e152. [Google Scholar] [CrossRef] [PubMed]
- Sampath, P.; Rini, D.; Long, D.M. Microanatomical Variations in the Cerebellopontine Angle Associated with Vestibular Schwannomas (Acoustic Neuromas): A Retrospective Study of 1006 Consecutive Cases. J. Neurosurg. 2000, 92, 70–78. [Google Scholar] [CrossRef]
- Kurtsoy, A.; Menku, A.; Tucer, B.; Oktem, I.S.; Akdemir, H. Neuronavigation in Skull Base Tumors. Minim. Invasive Neurosurg. 2005, 48, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Jödicke, A.; Ottenhausen, M.; Lenarz, T. Clinical Use of Navigation in Lateral Skull Base Surgery: Results of a Multispecialty National Survey among Skull Base Surgeons in Germany. J. Neurol. Surg. B Skull Base 2018, 79, 545–553. [Google Scholar] [CrossRef]
- Matsushima, K.; Kohno, M.; Sakamoto, H.; Ichimasu, N.; Nakajima, N. Intraoperative Continuous Neuromonitoring for Vestibular Schwannoma Surgery: Real-Time, Quantitative, and Functional Evaluation. World Neurosurg. 2022, 158, 189. [Google Scholar] [CrossRef]
- Prado, M.B.; Kubota, Y. Utility and Prognostic Value of Intraoperative Blink Reflex in Trigeminal or Facial Nerve Monitoring in Skull Base Surgeries: A Systematic Review. World Neurosurg. 2024, 187, e759–e768. [Google Scholar] [CrossRef]
- Jian, Z.-H.; Chen, P.; Li, Y.; Liao, C.-C.; Yi, X.-F.; Zhan, R.-G.; Chen, G. Surgical Management of Complex Skull Base Tumor Using Preoperative Multimodal Image Fusion Technology. J. Craniofacial Surg. 2024, 35, 853–859. [Google Scholar] [CrossRef]
- Gardner, P.A.; Tormenti, M.J.; Pant, H.; Fernandez-Miranda, J.C.; Snyderman, C.H.; Horowitz, M.B. Carotid Artery Injury during Endoscopic Endonasal Skull Base Surgery: Incidence and Outcomes: Incidence and Outcomes. Neurosurgery 2013, 73, ons261–ons269. [Google Scholar] [CrossRef] [PubMed]
- Van Der Veken, J.; Simons, M.; Mulcahy, M.J.; Wurster, C.; Harding, M.; Van Velthoven, V. The Surgical Management of Intraoperative Intracranial Internal Carotid Artery Injury in Open Skull Base Surgery—A Systematic Review. Neurosurg. Rev. 2022, 45, 1263–1273. [Google Scholar] [CrossRef]
- Origitano, T.C.; Al-Mefty, O.; Leonetti, J.P.; DeMonte, F.; Reichman, O.H. Vascular Considerations and Complications in Cranial Base Surgery. Neurosurgery 1994, 35, 351. [Google Scholar] [CrossRef]
- Adachi, K.; Murayama, K.; Hayakawa, M.; Hasegawa, M.; Muto, J.; Nishiyama, Y.; Ohba, S.; Hirose, Y. Objective and Quantitative Evaluation of Angiographic Vascularity in Meningioma: Parameters of Dynamic Susceptibility Contrast-Perfusion-Weighted Imaging as Clinical Indicators of Preoperative Embolization. Neurosurg. Rev. 2021, 44, 2629–2638. [Google Scholar] [CrossRef]
- Yoshida, K.; Akiyama, T.; Takahashi, S.; Miwa, T.; Horiguchi, T.; Sasaki, H.; Toda, M. Cone-Beam Computed Tomography Fusion Technique for Vascular Assessment of Skull Base Meningiomas. World Neurosurg. 2021, 151, 61–69. [Google Scholar] [CrossRef]
- Shibao, S.; Toda, M.; Orii, M.; Fujiwara, H.; Yoshida, K. Various Patterns of the Middle Cerebral Vein and Preservation of Venous Drainage During the Anterior Transpetrosal Approach. J. Neurosurg. 2016, 124, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Hasegawa, M.; Hirose, Y. Evaluation of Venous Drainage Patterns for Skull Base Meningioma Surgery. Neurol. Med. Chir. 2017, 57, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Arima, H.; Watanabe, Y.; Tanoue, Y.; Morisako, H.; Kawakami, T.; Ichinose, T.; Goto, T. Angiographic Evaluation of the Feeding Artery in Skull Base Meningioma. J. Clin. Med. Res. 2023, 12, 7717. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Hachiya, J.; Mizutani, Y.; Yoshino, A. Three-Dimensional Helical CT Angiography of Skull Base Meningiomas. Am. J. Neuroradiol. 1996, 17, 933–936. [Google Scholar]
- Bi, W.L.; Brown, P.A.; Abolfotoh, M.; Al-Mefty, O.; Mukundan, S., Jr.; Dunn, I.F. Utility of Dynamic Computed Tomography Angiography in the Preoperative Evaluation of Skull Base Tumors. J. Neurosurg. 2015, 123, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Uetani, H.; Akter, M.; Hirai, T.; Shigematsu, Y.; Kitajima, M.; Kai, Y.; Yano, S.; Nakamura, H.; Makino, K.; Azuma, M.; et al. Can 3T MR Angiography Replace DSA for the Identification of Arteries Feeding Intracranial Meningiomas? Am. J. Neuroradiol. 2013, 34, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, M.; Sugiu, K.; Hishikawa, T.; Haruma, J.; Takahashi, Y.; Murai, S.; Nishi, K.; Yamaoka, Y.; Shimazu, Y.; Fujii, K.; et al. Detailed Arterial Anatomy and Its Anastomoses of the Sphenoid Ridge and Olfactory Groove Meningiomas with Special Reference to the Recurrent Branches from the Ophthalmic Artery. Am. J. Neuroradiol. 2020, 41, 2082–2087. [Google Scholar] [CrossRef] [PubMed]
- Yoon, N.; Shah, A.; Couldwell, W.T.; Kalani, M.Y.S.; Park, M.S. Preoperative Embolization of Skull Base Meningiomas: Current Indications, Techniques, and Pearls for Complication Avoidance. Neurosurg. Focus 2018, 44, E5. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, M.; Abe, T.; Fujimura, N.; Takeuchi, Y.; Shigemori, M. Preoperative Embolization of Brain Tumor with Pial Artery or Dural Branch of Internal Carotid Artery as Feeding Artery. Interv. Neuroradiol. 2006, 12, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Sumi, K.; Otani, N.; Mori, F.; Yamamuro, S.; Oshima, H.; Yoshino, A. Venous Hypertension Caused by a Meningioma Involving the Sigmoid Sinus: Case Report. BMC Neurol. 2021, 21, 119. [Google Scholar] [CrossRef]
- Watanabe, T.; Igarashi, T.; Fukushima, T.; Yoshino, A.; Katayama, Y. Anatomical Variation of Superior Petrosal Vein and Its Management during Surgery for Cerebellopontine Angle Meningiomas. Acta Neurochir. 2013, 155, 1871–1878. [Google Scholar] [CrossRef]
- Sindou, M.P.; Alvernia, J.E. Results of Attempted Radical Tumor Removal and Venous Repair in 100 Consecutive Meningiomas Involving the Major Dural Sinuses. J. Neurosurg. 2006, 105, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Yamano, A.; Matsuda, M.; Kohzuki, H.; Ishikawa, E. Impact of Superficial Middle Cerebral Vein Compression on Peritumoral Brain Edema of the Sphenoid Wing Meningioma. Clin. Neurol. Neurosurg. 2024, 246, 108575. [Google Scholar] [CrossRef] [PubMed]
- Teranishi, Y.; Kohno, M.; Sora, S.; Sato, H. Determination of the Keyhole Position in a Lateral Suboccipital Retrosigmoid Approach. Neurol. Med. Chir. 2014, 54, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.-H.; Sheng, M.-F.; Li, J.-Y.; Li, Y.; Weng, Z.-J.; Chen, G. Precise Localization in Craniotomy with a Retrosigmoid Keyhole Approach: Microsurgical Anatomy and Clinical Study. Front. Surg. 2022, 9, 809098. [Google Scholar] [CrossRef] [PubMed]
- Feigl, G.C.; Krischek, B.; Ritz, R.; Thaher, F.; Marquardt, J.S.; Hirt, B.; Korn, A.; Schumann, M.; Tatagiba, M.; Ebner, F.H. Evaluation of a 3-Dimensional Voxel-Based Neuronavigation System with Perspective Image Rendering for Keyhole Approaches to the Skull Base: An Anatomical Study. World Neurosurg. 2014, 81, 609–616. [Google Scholar] [CrossRef]
- Oishi, M.; Fukuda, M.; Ishida, G.; Saito, A.; Hiraishi, T.; Fujii, Y. Presurgical Simulation with Advanced 3-Dimensional Multifusion Volumetric Imaging in Patients with Skull Base Tumors. Neurosurgery 2011, 68, 188–199. [Google Scholar] [CrossRef]
- Sato, M.; Tateishi, K.; Murata, H.; Kin, T.; Suenaga, J.; Takase, H.; Yoneyama, T.; Nishii, T.; Tateishi, U.; Yamamoto, T.; et al. Three-Dimensional Multimodality Fusion Imaging as an Educational and Planning Tool for Deep-Seated Meningiomas. Br. J. Neurosurg. 2018, 32, 509–515. [Google Scholar] [CrossRef]
- Chakeres, D.W.; Kapila, A. Brainstem and Related Structures: Normal CT Anatomy Using Direct Longitudinal Scanning with Metrizamide Cisternography. Radiology 1983, 149, 709–715. [Google Scholar] [CrossRef]
- Mamata, Y.; Muro, I.; Matsumae, M.; Komiya, T.; Toyama, H.; Tsugane, R.; Sato, O. Magnetic Resonance Cisternography for Visualization of Intracisternal Fine Structures. J. Neurosurg. 1998, 88, 670–678. [Google Scholar] [CrossRef]
- Seitz, J.; Held, P.; Strotzer, M.; Völk, M.; Nitz, W.R.; Dorenbeck, U.; Stamato, S.; Feuerbach, S. MR Imaging of Cranial Nerve Lesions Using Six Different High-Resolution T1- and T2(*)-Weighted 3D and 2D Sequences. Acta Radiol. 2002, 43, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Ciftci, E.; Anik, Y.; Arslan, A.; Akansel, G.; Sarisoy, T.; Demirci, A. Driven Equilibrium (Drive) MR Imaging of the Cranial Nerves V-VIII: Comparison with the T2-Weighted 3D TSE Sequence. Eur. J. Radiol. 2004, 51, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Yousry, I.; Camelio, S.; Schmid, U.D.; Horsfield, M.; Wiesmann, M.; Brückmann, H.; Yousry, T. Visualization of Cranial Nerves I–XII: Value of 3D CISS and T2-Weighted FSE Sequences. Eur. Radiol. 2000, 10, 1061–1067. [Google Scholar] [CrossRef]
- Aydın, H.; Altın, E.; Dilli, A.; Sipahioğlu, S.; Hekimoğlu, B. Evaluation of Jugular Foramen Nerves by Using B-FFE, T2-Weighted DRIVE, T2-Weighted FSE and Post-Contrast T1-Weighted MRI Sequences. Diagn. Interv. Radiol. 2011, 17, 3–9. [Google Scholar] [CrossRef]
- Moon, W.-J.; Roh, H.G.; Chung, E.C. Detailed MR Imaging Anatomy of the Cisternal Segments of the Glossopharyngeal, Vagus, and Spinal Accessory Nerves in the Posterior Fossa: The Use of 3D Balanced Fast-Field Echo MR Imaging. Am. J. Neuroradiol. 2009, 30, 1116–1120. [Google Scholar] [CrossRef]
- Yagi, A.; Sato, N.; Taketomi, A.; Nakajima, T.; Morita, H.; Koyama, Y.; Aoki, J.; Endo, K. Normal Cranial Nerves in the Cavernous Sinuses: Contrast-Enhanced Three-Dimensional Constructive Interference in the Steady State MR Imaging. Am. J. Neuroradiol. 2005, 26, 946–950. [Google Scholar]
- Özgür, A.; Esen, K.; Kara, E.; Temel, G.O. Visualization of the Abducens Nerve in Its Petroclival Segment Using Contrast-Enhanced FIESTA MRI: The Size of the Petroclival Venous Confluence Affects Detectability. Clin. Neuroradiol. 2017, 27, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Blitz, A.M.; Macedo, L.L.; Chonka, Z.D.; Ilica, A.T.; Choudhri, A.F.; Gallia, G.L.; Aygun, N. High-Resolution CISS MR Imaging with and Without Contrast for Evaluation of the Upper Cranial Nerves: Segmental Anatomy and Selected Pathologic Conditions of the Cisternal Through Extraforaminal Segments. Neuroimaging Clin. 2014, 24, 17–34. [Google Scholar] [CrossRef]
- Mori, S.; van Zijl, P.C.M. Fiber Tracking: Principles and Strategies—A Technical Review. NMR Biomed. 2002, 15, 468–480. [Google Scholar] [CrossRef] [PubMed]
- Joo, W.; Rhoton, A.L., Jr. Microsurgical Anatomy of the Trochlear Nerve. Clin. Anat. 2015, 28, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Hodaie, M.; Quan, J.; Chen, D.Q. In Vivo Visualization of Cranial Nerve Pathways in Humans Using Diffusion-Based Tractography. Neurosurgery 2010, 66, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, M.; Abhinav, K.; Yeh, F.-C.; Panesar, S.; Fernandes, D.; Pathak, S.; Gardner, P.A.; Fernandez-Miranda, J.C. Visualization of Cranial Nerves Using High-Definition Fiber Tractography. Neurosurgery 2016, 79, 146–165. [Google Scholar] [CrossRef]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncology 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [PubMed]
- Paldor, I.; Awad, M.; Sufaro, Y.Z.; Kaye, A.H.; Shoshan, Y. Review of Controversies in Management of Non-Benign Meningioma. J. Clin. Neurosci. 2016, 31, 37–46. [Google Scholar] [CrossRef]
- Sumida, M.; Arita, K.; Migita, K.; Iida, K.; Kurisu, K.; Uozumi, T. Demonstration of the Optic Pathway in Sellar/Juxtasellar Tumours with Visual Disturbance on MR Imaging. Acta Neurochir. 1998, 140, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Saeki, N.; Murai, H.; Kubota, M.; Fujimoto, N.; Iuchi, T.; Yamaura, A.; Sunami, K. Heavily T2 Weighted MR Images of Anterior Optic Pathways in Patients with Sellar and Parasellar Tumours—Prediction of Surgical Anatomy. Acta Neurochir. 2002, 144, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Su, S.; Yue, S.; Zhao, Y.; Li, Y.; Chen, X.; Ma, H. Preoperative Visualization of Cranial Nerves in Skull Base Tumor Surgery Using Diffusion Tensor Imaging Technology. Turk. Neurosurg. 2016, 26, 805–812. [Google Scholar] [CrossRef]
- Zolal, A.; Sobottka, S.B.; Podlesek, D.; Linn, J.; Rieger, B.; Juratli, T.A.; Schackert, G.; Kitzler, H.H. Comparison of Probabilistic and Deterministic Fiber Tracking of Cranial Nerves. J. Neurosurg. 2017, 127, 613–621. [Google Scholar] [CrossRef]
- Hokamura, M.; Uetani, H.; Hamasaki, T.; Nakaura, T.; Morita, K.; Yamashita, Y.; Kitajima, M.; Sugitani, A.; Mukasa, A.; Hirai, T. Effect of Deep Learning-Based Reconstruction on High-Resolution Three-Dimensional T2-Weighted Fast Asymmetric Spin-Echo Imaging in the Preoperative Evaluation of Cerebellopontine Angle Tumors. Neuroradiology 2024, 66, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Mikami, T.; Minamida, Y.; Yamaki, T.; Koyanagi, I.; Nonaka, T.; Houkin, K. Cranial Nerve Assessment in Posterior Fossa Tumors with Fast Imaging Employing Steady-State Acquisition (FIESTA). Neurosurg. Rev. 2005, 28, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Epprecht, L.; Kozin, E.D.; Piccirelli, M.; Kanumuri, V.V.; Tarabichi, O.; Remenschneider, A.; Barker, F.G., II; McKenna, M.J.; Huber, A.M.; Cunnane, M.E.; et al. Super-Resolution Diffusion Tensor Imaging for Delineating the Facial Nerve in Patients with Vestibular Schwannoma. J. Neurol. Surg. B Skull Base 2019, 80, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Churi, O.N.; Gupta, S.; Misra, B.K. Correlation of Preoperative Cranial Nerve Diffusion Tensor Tractography with Intraoperative Findings in Surgery of Cerebellopontine Angle Tumors. World Neurosurg. 2019, 127, e509–e516. [Google Scholar] [CrossRef]
- Szmuda, T.; Słoniewski, P.; Ali, S.; Pereira, P.M.G.; Pacholski, M.; Timemy, F.; Sabisz, A.; Szurowska, E.; Kierońska, S. Reliability of Diffusion Tensor Tractography of Facial Nerve in Cerebello-Pontine Angle Tumours. Neurol. Neurochir. Pol. 2020, 54, 73–82. [Google Scholar] [CrossRef]
- Behan, B.; Chen, D.Q.; Sammartino, F.; DeSouza, D.D.; Wharton-Shukster, E.; Hodaie, M. Comparison of Diffusion-Weighted MRI Reconstruction Methods for Visualization of Cranial Nerves in Posterior Fossa Surgery. Front. Neurosci. 2017, 11, 554. [Google Scholar] [CrossRef]
- Agarwal, A. Intracranial Trigeminal Schwannoma. Neuroradiol. J. 2015, 28, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Aftahy, A.K.; Groll, M.; Barz, M.; Bernhardt, D.; Combs, S.E.; Meyer, B.; Negwer, C.; Gempt, J. Surgical Management of Jugular Foramen Schwannomas. Cancers 2021, 13, 4218. [Google Scholar] [CrossRef]
- Myrseth, E.; Møller, P.; Pedersen, P.-H.; Lund-Johansen, M. Vestibular Schwannoma: Surgery or Gamma Knife Radiosurgery? A Prospective, Nonrandomized Study. Neurosurgery 2009, 64, 654–661. [Google Scholar] [CrossRef]
- Hasegawa, T.; Kida, Y.; Kobayashi, T.; Yoshimoto, M.; Mori, Y.; Yoshida, J. Long-Term Outcomes in Patients with Vestibular Schwannomas Treated Using Gamma Knife Surgery: 10-Year Follow Up. J. Neurosurg. 2005, 102, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Seol, H.J.; Kim, C.-H.; Park, C.-K.; Kim, C.H.; Kim, D.G.; Chung, Y.-S.; Jung, H.-W. Optimal Extent of Resection in Vestibular Schwannoma Surgery: Relationship to Recurrence and Facial Nerve Preservation. Neurol. Med. Chir. 2006, 46, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Iwai, Y.; Ishibashi, K.; Watanabe, Y.; Uemura, G.; Yamanaka, K. Functional Preservation after Planned Partial Resection Followed by Gamma Knife Radiosurgery for Large Vestibular Schwannomas. World Neurosurg. 2015, 84, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.C.J.; Macdonald, D.B.; Akagami, R.; Westerberg, B.; Alkhani, A.; Kanaan, I.; Hassounah, M. Intraoperative Facial Motor Evoked Potential Monitoring with Transcranial Electrical Stimulation during Skull Base Surgery. Clin. Neurophysiol. 2005, 116, 588–596. [Google Scholar] [CrossRef]
- Amano, M.; Kohno, M.; Nagata, O.; Taniguchi, M.; Sora, S.; Sato, H. Intraoperative Continuous Monitoring of Evoked Facial Nerve Electromyograms in Acoustic Neuroma Surgery. Acta Neurochir. 2011, 153, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Sartoretti-Schefer, S.; Kollias, S.; Valavanis, A. Spatial Relationship between Vestibular Schwannoma and Facial Nerve on Three-Dimensional T2-Weighted Fast Spin-Echo MR Images. Am. J. Neuroradiol. 2000, 21, 810–816. [Google Scholar]
- Taoka, T.; Hirabayashi, H.; Nakagawa, H.; Sakamoto, M.; Myochin, K.; Hirohashi, S.; Iwasaki, S.; Sakaki, T.; Kichikawa, K. Displacement of the Facial Nerve Course by Vestibular Schwannoma: Preoperative Visualization Using Diffusion Tensor Tractography. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2006, 24, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- GerGanoV, V.M.; GiorDano, M.; SaMii, M.; Samii, A. Diffusion Tensor Imaging-Based Fiber Tracking for Prediction of the Position of the Facial Nerve in Relation to Large Vestibular Schwannomas. J. Neurosurg. 2011, 115, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.-H.; Qi, Z.-G.; Chen, G.; Hu, P.; Li, M.-C.; Liang, J.-T.; Guo, H.-C.; Ling, F.; Bao, Y.-H. Identification of Cranial Nerves near Large Vestibular Schwannomas Using Superselective Diffusion Tensor Tractography: Experience with 23 Cases. Acta Neurochir. 2015, 157, 1239–1249. [Google Scholar] [CrossRef]
- Song, F.; Hou, Y.; Sun, G.; Chen, X.; Xu, B.; Huang, J.H.; Zhang, J. In Vivo Visualization of the Facial Nerve in Patients with Acoustic Neuroma Using Diffusion Tensor Imaging-Based Fiber Tracking. J. Neurosurg. 2016, 125, 787–794. [Google Scholar] [CrossRef]
- Zhang, Y.; Mao, Z.; Wei, P.; Jin, Y.; Ma, L.; Zhang, J.; Yu, X. Preoperative Prediction of Location and Shape of Facial Nerve in Patients with Large Vestibular Schwannomas Using Diffusion Tensor Imaging-Based Fiber Tracking. World Neurosurg. 2017, 99, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, L.; Hao, S.; Li, D.; Wu, Z.; Zhang, L.; Zhang, J. Identification of the Facial Nerve in Relation to Vestibular Schwannoma Using Preoperative Diffusion Tensor Tractography and Intraoperative Tractography-Integrated Neuronavigation System. World Neurosurg. 2017, 107, 669–677. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, H.; Xu, M.; Mei, W. Significance of Preoperative Nerve Reconstruction Using Diffusion Tensor Imaging Tractography for Facial Nerve Protection in Vestibular Schwannoma. J. Korean Neurosurg. Soc. 2023, 66, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Q.; Quan, J.; Guha, A.; Tymianski, M.; Mikulis, D.; Hodaie, M. Three-Dimensional in Vivo Modeling of Vestibular Schwannomas and Surrounding Cranial Nerves with Diffusion Imaging Tractography. Neurosurgery 2011, 68, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, S.; Aoki, S.; Ohtomo, K. Cranial Nerve Assessment in Cavernous Sinus Tumors with Contrast-Enhanced 3D Fast-Imaging Employing Steady-State Acquisition MR Imaging. Neuroradiology 2009, 51, 467–470. [Google Scholar] [CrossRef]
- Isikay, I.; Cekic, E.; Baylarov, B.; Tunc, O.; Hanalioglu, S. Narrative Review of Patient-Specific 3D Visualization and Reality Technologies in Skull Base Neurosurgery: Enhancements in Surgical Training, Planning, and Navigation. Front. Surg. 2024, 11, 1427844. [Google Scholar] [CrossRef] [PubMed]
- Neves, C.A.; Tran, E.D.; Blevins, N.H.; Hwang, P.H. Deep Learning Automated Segmentation of Middle Skull-Base Structures for Enhanced Navigation. Int. Forum Allergy Rhinol. 2021, 11, 1694–1697. [Google Scholar] [CrossRef] [PubMed]
Tumor Location | Authors | Year | Imaging Modality | Target Cranial Nerve | Identification Rate of Cranial Nerve in Preoperative Image, % (n) | Accuracy Rate Confirmed During the Surgery, % (n) |
---|---|---|---|---|---|---|
Parasellar | Sumida M | 1998 | SPGR | II | 50.0% (7/14) | - |
Parasellar | Saeki N | 2002 | Heavily T2 | II | 85.7% (6/7) | - |
Parasellar | Ma J | 2016 | DTI | II | 100% (3/3) | 100% (2/2) |
Parasellar | Zolal A | 2017 | DTI | II | 50.0% (1/2) | 100% (1/1) |
Petroclival | Yang K | 2017 | FIESTA | VI | 100% (1/1) | 100% (1/1) |
Cerebropontine angle | Hokamura M | 2024 | FACE | VII | 50.0% (1/2) | 100% (1/1) |
Cerebropontine angle | Mikami T | 2005 | FIESTA + C | V, VI, VII, VIII, IX, X, XII | 87.5% (7/8) | 100% (7/7) |
Petroclival | Ma J | 2016 | DTI | V, VI, VII, VIII | 100% (3/3) | 100% (3/3) |
Petroclival | Yoshino M | 2016 | DTI | III, IV, V, VI | 100% (1/1) | 100% (1/1) |
Posterior fossa | Behan B | 2017 | DTI | V, VII, VIII | 100% (3/3) | - |
Cerebropontine angle | Zolal A | 2017 | DTI | V, VII, VIII | 100% (1/1) | 100% (1/1) |
Cerebropontine angle | Epprecht L | 2019 | DTI | VII, VIII | 100% (1/1) | - |
Cerebropontine angle | Churi ON | 2019 | DTI | V, VII, VIII | 100% (2/2) | 100% (2/2) |
Posterior fossa | Szmuda T | 2020 | DTI | VII | 100% (4/4) | 100% (4/4) |
Tumor Origin | Authors | Year | Imaging Modality | Target Cranial Nerve | Identification Rate of Cranial Nerve in Preoperative Image, % (n) | Accuracy Rate Confirmed During the Surgery, % (n) |
---|---|---|---|---|---|---|
Vestibular nerve | Mikami T | 2005 | FIESTA + C | VII, VIII | 22.2% (2/9) | - |
Vestibular nerve | Sartoretti-Schefer S | 2000 | T2 FSE | VII | 9.1% (2/22) | - |
Vestibular nerve | Hokamura M | 2024 | FACE | VII | 36.4% (4/11) | 100% (4/4) |
Vestibular nerve | Taoka T | 2006 | DTI | VII | 87.5% (7/8) | 83.3% (5/6) |
Vestibular nerve | Gerganov VM | 2011 | DTI | VII | 100% (22/22) | 90.1% (20/22) |
Vestibular nerve | Wei PH | 2015 | DTI | VII | 100% (23/23) | 95.5% (21/22) |
Vestibular nerve | Ma J | 2016 | DTI | VII | 88.9% (8/9) | 100% (8/8) |
Vestibular nerve | Song F | 2016 | DTI | VII | 93.3% (14/15) | 92.9% (13/14) |
Vestibular nerve | Behan B | 2017 | DTI | V, VII, VIII | 100% (6/6) | 100% (6/6) |
Vestibular nerve | Zolal A | 2017 | DTI | VII, VIII | 100% (2/2) | 100% (2/2) |
Vestibular nerve | Zhang Y | 2017 | DTI | VII | 100% (30/30) | 100% (29/29) |
Vestibular nerve | Li H | 2017 | DTI | VII | 94.7% (18/19) | 94.4% (17/18) |
Vestibular nerve | Churi ON | 2019 | DTI | VII | 100% (32/32) | 100% (32/32) |
Vestibular nerve | Szmuda T | 2020 | DTI | VII | 90.6% (29/32) | 89.7% (26/29) |
Vestibular nerve | Zhang Y | 2023 | DTI | VII | 90.0% (27/30) | 92.6% (25/27) |
Trigeminal nerve | Mikami T | 2005 | FIESTA + C | V | 0.0% (0/2) | - |
Trigeminal nerve | Behan B | 2017 | DTI | V | 100% (1/1) | 100% (1/1) |
Trigeminal nerve | Churi ON | 2019 | DTI | V | 100% (2/2) | 50.0% (1/2) |
Lower cranial nerve | Mikami T | 2005 | FIESTA + C | IX, X, XI | 100% (1/1) | - |
Case | Age | Sex | Attachment | Contrast Defect | Intraoperative Findings of CNs | Pathology |
---|---|---|---|---|---|---|
1 | 47 | F | Petrous | LCNs | Penetrated | Meningothelial |
2 | 75 | F | Foramen magnum | LCNs | Penetrated | Transitional |
3 | 48 | F | Petroclival | V | Penetrated | Meningothelial |
VI | Not observed | |||||
VII-VIII | Not observed | |||||
4 | 78 | M | Petroclival | V | Penetrated | Meningothelial |
VI | Penetrated | |||||
5 | 70 | M | Petroclival | V | Penetrated | Clear cell |
6 | 48 | F | Petrotentorial | V | Penetrated | Meningothelial |
7 | 74 | F | Petrotentorial | V | Penetrated | Transitional |
VI | Not observed | |||||
8 | 45 | F | Jugular tubercle | LCNs | Penetrated | Meningothelial |
9 | 61 | F | Petroclival | VI | Penetrated | Meningothelial |
10 | 35 | F | Petrous | LCN | Penetrated | Meningothelial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamano, A.; Matsuda, M.; Ishikawa, E. Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors. Cancers 2025, 17, 62. https://doi.org/10.3390/cancers17010062
Yamano A, Matsuda M, Ishikawa E. Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors. Cancers. 2025; 17(1):62. https://doi.org/10.3390/cancers17010062
Chicago/Turabian StyleYamano, Akinari, Masahide Matsuda, and Eiichi Ishikawa. 2025. "Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors" Cancers 17, no. 1: 62. https://doi.org/10.3390/cancers17010062
APA StyleYamano, A., Matsuda, M., & Ishikawa, E. (2025). Preoperative Vascular and Cranial Nerve Imaging in Skull Base Tumors. Cancers, 17(1), 62. https://doi.org/10.3390/cancers17010062