Reading Skill Profiles in School-Aged Italian-Speaking Children: A Latent Profile Analysis Investigation into the Interplay of Decoding, Comprehension and Attentional Control
Abstract
:1. Introduction
1.1. Attentional Control: A Fundamental Pillar of Reading Skills’ Development
1.2. The Relationship between Decoding and Attentional Control
1.3. The Relationship between Comprehension and Attentional Control
1.4. Aims and Hypothesis
2. Materials and Methods
2.1. Participants
2.2. Procedure
- The language and executive attention domain: forward enumeration, rapid naming of colors, and verbal fluency (phonological);
- The short-term memory and working memory domain: digit span forward, digit span backward, alpha span, and updating of objects;
- The visuo-spatial and visuo-constructive domain: Rey figure (copy), TPV subtest copy, TPV subtest spatial position, and TPV subtest spatial relation, visuo-spatial span (Corsi test) forward, visuo-spatial span (Corsi test) backward.
2.3. Statistical Analysis
2.3.1. Latent Profile Analysis (LPA)
2.3.2. MANOVAs
2.3.3. ANOVA
2.3.4. Dominance Analysis
3. Results
3.1. LPA
3.2. MANOVAs
3.3. ANOVA
3.4. Dominance Analysis
4. Discussion
4.1. Reading—Decoding
4.2. Reading—Comprehension
5. Study Limitations and Further Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haft, S.L.; Caballero, J.N.; Tanaka, H.; Zekelman, L.; Cutting, L.E.; Uchikoshi, Y.; Hoeft, F. Direct and indirect contributions of executive function to word decoding and reading comprehension in kindergarten. Learn. Individ. Differ. 2019, 76, 101783. [Google Scholar] [CrossRef]
- Burns, M.S.; Kidd, J.K. Learning to Read. In International Encyclopedia of Education, 3rd ed.; Peterson, P., Baker, E., McGaw, B., Eds.; Elsevier: Oxford, UK, 2010; pp. 394–400. ISBN 978-0-08-044894-7. [Google Scholar]
- OECD. PISA 2018 Assessment and Analytical Framework; OECD Publishing: Paris, France, 2019. [Google Scholar]
- James, E.; Thompson, P.A.; Bowes, L.; Nation, K. Heterogeneity in children’s reading comprehension difficulties: A latent class approach. JCPP Adv. 2023, 3, e12177. [Google Scholar] [CrossRef] [PubMed]
- Livingston, E.M.; Siegel, L.S.; Ribary, U. Developmental dyslexia: Emotional impact and consequences. Aust. J. Learn. Difficulties 2018, 23, 107–135. [Google Scholar] [CrossRef]
- Ghisi, M.; Bottesi, G.; Re, A.M.; Cerea, S.; Mammarella, I.C. Socioemotional Features and Resilience in Italian University Students with and without Dyslexia. Front. Psychol. 2016, 7, 478. [Google Scholar] [CrossRef]
- Fluss, J.; Ziegler, J.C.; Warszawski, J.; Ducot, B.; Richard, G.; Billard, C. Poor reading in French elementary school: The interplay of cognitive, behavioral, and socioeconomic factors. J. Dev. Behav. Pediatr. 2009, 30, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Hulme, C.; Hatcher, P.J.; Nation, K.; Brown, A.; Adams, J.; Stuart, G. Phoneme awareness is a better predictor of early reading skill than onset-rime awareness. J. Exp. Child Psychol. 2002, 82, 2–28. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.S.; Rosen, G.D.; Drislane, F.W.; Galaburda, A.M. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. Proc. Natl. Acad. Sci. USA 1991, 88, 7943–7947. [Google Scholar] [CrossRef]
- Best, M.; Demb, J.B. Normal planum temporale asymmetry in dyslexics with a magnocellular pathway deficit. Neuroreport 1999, 10, 607–612. [Google Scholar] [CrossRef]
- Geiger, G.; Lettvin, J.Y. Peripheral vision in persons with dyslexia. N. Engl. J. Med. 1987, 316, 1238–1243. [Google Scholar] [CrossRef]
- Fawcett, A.J.; Nicolson, R.I.; Dean, P. Impaired performance of children with dyslexia on a range of cerebellar tasks. Ann. Dyslexia 1996, 46, 259–283. [Google Scholar] [CrossRef]
- Bakker, D.J. Neuropsychological Classification and Treatment of Dyslexia. J. Learn. Disabil. 1992, 25, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Cirino, P.T.; Miciak, J.; Ahmed, Y.; Barnes, M.A.; Taylor, W.P.; Gerst, E.H. Executive function: Association with multiple reading skills. Read. Writ. 2019, 32, 1819–1846. [Google Scholar] [CrossRef] [PubMed]
- Varvara, P.; Varuzza, C.; Sorrentino, A.C.P.; Vicari, S.; Menghini, D. Executive functions in developmental dyslexia. Front. Hum. Neurosci. 2014, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Ober, T.M.; Brooks, P.J.; Homer, B.D.; Rindskopf, D. Executive functions and decoding in children and adolescents: A meta-analytic investigation. Educ. Psychol. Rev. 2020, 32, 735–763. [Google Scholar] [CrossRef]
- Meixner, J.M.; Warner, G.J.; Lensing, N.; Schiefele, U.; Elsner, B. The relation between executive functions and reading comprehension in primary-school students: A cross-lagged-panel analysis. Early Child. Res. Q. 2019, 46, 62–74. [Google Scholar] [CrossRef]
- Pasqualotto, A.; Cochrane, A.; Bavelier, D.; Altarelli, I. A novel task and methods to evaluate inter-individual variation in audio-visual associative learning. Cognition 2024, 242, 105658. [Google Scholar] [CrossRef]
- Alloway, T.P.; Alloway, R.G. Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 2010, 106, 20–29. [Google Scholar] [CrossRef]
- Cockcroft, K. The role of working memory in childhood education: Five questions and answers. S. Afr. J. Child. Educ. 2015, 5, 1–20. [Google Scholar] [CrossRef]
- Cattell, R.B. Intelligence: Its Structure, Growth and Action; Elsevier: Amsterdam, The Netherlands, 1987; ISBN 0-08-086689-1. [Google Scholar]
- Miciak, J.; Fletcher, J.M.; Stuebing, K.K.; Vaughn, S.; Tolar, T.D. Patterns of cognitive strengths and weaknesses: Identification rates, agreement, and validity for learning disabilities identification. Sch. Psychol. Q. 2014, 29, 21. [Google Scholar] [CrossRef]
- Peng, P.; Zhang, Z.; Wang, W.; Lee, K.; Wang, T.; Wang, C.; Luo, J.; Lin, J. A meta-analytic review of cognition and reading difficulties: Individual differences, moderation, and language mediation mechanisms. Psychol. Bull. 2022, 148, 227. [Google Scholar] [CrossRef]
- Zeynep Enkavi, A.; Eisenberg, I.W.; Bissett, P.G.; Mazza, G.L.; MacKinnon, D.P.; Marsch, L.A.; Poldrack, R.A. Large-scale analysis of test–retest reliabilities of self-regulation measures. Proc. Natl. Acad. Sci. USA 2019, 116, 5472–5477. [Google Scholar] [CrossRef]
- Snyder, H.R.; Miyake, A.; Hankin, B.L. Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Front. Psychol. 2015, 6, 132040. [Google Scholar] [CrossRef] [PubMed]
- Tiego, J.; Bellgrove, M.A.; Whittle, S.; Pantelis, C.; Testa, R. Common mechanisms of executive attention underlie executive function and effortful control in children. Dev. Sci. 2020, 23, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Yangüez, M.; Bediou, B.; Chanal, J.; Bavelier, D. In search of better practice in executive functions assessment: Methodological issues and potential solutions. Psychol. Rev. 2023, 131, 402–430. [Google Scholar] [CrossRef] [PubMed]
- Engle, R.W. Working memory and executive attention: A revisit. Perspect. Psychol. Sci. 2018, 13, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Raz, A.; Posner, M.I. Attentional mechanisms. Encycl. Neurol. Sci. 2003, 1, 292–299. [Google Scholar] [CrossRef]
- Petersen, S.E.; Posner, M.I. The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 2012, 35, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Bavelier, D.; Green, C.S. Enhancing Attentional Control: Lessons from Action Video Games. Neuron 2019, 104, 147–163. [Google Scholar] [CrossRef]
- Engle, R.W. Working memory capacity as executive attention. Curr. Dir. Psychol. Sci. 2002, 11, 19–23. [Google Scholar] [CrossRef]
- Kane, M.J.; Bleckley, M.K.; Conway, A.R.A.; Engle, R.W. A controlled-attention view of working-memory capacity. J. Exp. Psychol. Gen. 2001, 130, 169–183. [Google Scholar] [CrossRef]
- Kovacs, K.; Conway, A.R. Process overlap theory: A unified account of the general factor of intelligence. Psychol. Inq. 2016, 27, 151–177. [Google Scholar] [CrossRef]
- Burgoyne, A.P.; Engle, R.W. Attention control: A cornerstone of higher-order cognition. Curr. Dir. Psychol. Sci. 2020, 29, 624–630. [Google Scholar] [CrossRef]
- Conway, A.R.; Kovacs, K.; Hao, H.; Rosales, K.P.; Snijder, J.-P. Individual differences in attention and intelligence: A united cognitive/psychometric approach. J. Intell. 2021, 9, 34. [Google Scholar] [CrossRef]
- Benso, F.; Moretti, S.; Bellazzini, V.; Benso, E.; Ardu, E.; Gazzellini, S. Principles of integrated cognitive training for executive attention: Application to an instrumental skill. Front. Psychol. 2021, 12, 647749. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Morra, S.; Panesi, S.; Traverso, L.; Usai, M.C. Which tasks measure what? Reflections on executive function development and a commentary on Podjarny, Kamawar, and Andrews (2017). J. Exp. Child Psychol. 2018, 167, 246–258. [Google Scholar] [CrossRef] [PubMed]
- Shipstead, Z.; Harrison, T.L.; Engle, R.W. Working memory capacity and fluid intelligence: Maintenance and disengagement. Perspect. Psychol. Sci. 2016, 11, 771–799. [Google Scholar] [CrossRef]
- Ehri, L.C. Phases of development in learning to read words by sight. J. Res. Read. 1995, 18, 116–125. [Google Scholar] [CrossRef]
- Ober, T.M.; Brooks, P.J.; Plass, J.L.; Homer, B.D. Distinguishing direct and indirect effects of executive functions on reading comprehension in adolescents. Read. Psychol. 2019, 40, 551–581. [Google Scholar] [CrossRef]
- Ehri, L.C. Orthographic mapping in the acquisition of sight word reading, spelling memory, and vocabulary learning. Sci. Stud. Read. 2014, 18, 5–21. [Google Scholar] [CrossRef]
- Lonigan, C.J.; Allan, D.M.; Phillips, B.M. Examining the predictive relations between two aspects of self-regulation and growth in preschool children’s early literacy skills. Dev. Psychol. 2017, 53, 63. [Google Scholar] [CrossRef]
- Schatschneider, C.; Carlson, C.D.; Francis, D.J.; Foorman, B.R.; Fletcher, J.M. Relationship of rapid automatized naming and phonological awareness in early reading development: Implications for the double-deficit hypothesis. J. Learn. Disabil. 2002, 35, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Rueda, M.R.; Rothbart, M.K.; McCandliss, B.D.; Saccomanno, L.; Posner, M.I. Training, maturation, and genetic influences on the development of executive attention. Proc. Natl. Acad. Sci. USA 2005, 102, 14931–14936. [Google Scholar] [CrossRef] [PubMed]
- Bosse, M.L.; Tainturier, M.J.; Valdois, S. Developmental dyslexia: The visual attention span deficit hypothesis. Cognition 2007, 104, 198–230. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, S.; Gori, S.; Ruffino, M.; Pedrolli, K.; Facoetti, A. A causal link between visual spatial attention and reading acquisition. Curr. Biol. 2012, 22, 814–819. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, A.; Altarelli, I.; De Angeli, A.; Menestrina, Z.; Bavelier, D.; Venuti, P. Enhancing reading skills through a video game mixing action mechanics and cognitive training. Nat. Hum. Behav. 2022, 6, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Vidyasagar, T.R.; Pammer, K. Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends Cogn. Sci. 2010, 14, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Valdois, S.; Roulin, J.-L.; Line Bosse, M. Visual attention modulates reading acquisition. Vis. Res. 2019, 165, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Gori, S.; Facoetti, A. How the visual aspects can be crucial in reading acquisition? The intriguing case of crowding and developmental dyslexia. J. Vis. 2015, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Grainger, J.; Tydgat, I.; Issele, J. Crowding Affects Letters and Symbols Differently. J. Exp. Psychol. Hum. Percept. Perform. 2010, 36, 673–688. [Google Scholar] [CrossRef]
- Grainger, J.; Dufau, S.; Ziegler, J.C. A Vision of Reading. Trends Cogn. Sci. 2016, 20, 171–179. [Google Scholar] [CrossRef]
- Cartwright, K.B.; Marshall, T.R.; Huemer, C.M.; Payne, J.B. Executive function in the classroom: Cognitive flexibility supports reading fluency for typical readers and teacher-identified low-achieving readers. Res. Dev. Disabil. 2019, 88, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Colè, P.; Duncan, L.G.; Blaye, A. Cognitive flexibility predicts early reading skills. Front. Psychol. 2014, 5, 1–8. [Google Scholar] [CrossRef]
- Lallier, M.; Carreiras, M. Cross-linguistic transfer in bilinguals reading in two alphabetic orthographies: The grain size accommodation hypothesis. Psychon. Bull. Rev. 2018, 25, 386–401. [Google Scholar] [CrossRef]
- Guajardo, N.R.; Cartwright, K.B. The contribution of theory of mind, counterfactual reasoning, and executive function to pre-readers’ language comprehension and later reading awareness and comprehension in elementary school. J. Exp. Child Psychol. 2016, 144, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Altemeier, L.E.; Abbott, R.D.; Berninger, V.W. Executive functions for reading and writing in typical literacy development and dyslexia. J. Clin. Exp. Neuropsychol. 2008, 30, 588–606. [Google Scholar] [CrossRef] [PubMed]
- Kibby, M.Y.; Lee, S.E.; Dyer, S.M. Reading performance is predicted by more than phonological processing. Front. Psychol. 2014, 5, 99917. [Google Scholar] [CrossRef] [PubMed]
- Arrington, C.N.; Kulesz, P.A.; Francis, D.J.; Fletcher, J.M.; Barnes, M.A. The contribution of attentional control and working memory to reading comprehension and decoding. Sci. Stud. Read. 2014, 18, 325–346. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, C.M.; Dodd, M.D.; Sheard, E.D.; Wilson, D.E.; Bibi, U. In opposition to inhibition. Psychol. Learn. Motiv. Adv. Res. Theory 2003, 43, 163–214. [Google Scholar]
- Baddeley, A. Working memory and language: An overview. J. Commun. Disord. 2003, 36, 189–208. [Google Scholar] [CrossRef]
- Just, M.A.; Carpenter, P.A. A capacity theory of comprehension: Individual differences in working memory. Psychol. Rev. 1992, 99, 122–149. [Google Scholar] [CrossRef]
- Gathercole, S.E.; Baddeley, A.D. Phonological working memory: A critical building block for reading development and vocabulary acquisition? Eur. J. Psychol. Educ. 1993, 8, 259. [Google Scholar] [CrossRef]
- Kieffer, M.J.; Vukovic, R.K.; Berry, D. Roles of attention shifting and inhibitory control in fourth-grade reading comprehension. Read. Res. Q. 2013, 48, 333–348. [Google Scholar] [CrossRef]
- Oakhill, J.V.; Cain, K.; Bryant, P.E. The dissociation of word reading and text comprehension: Evidence from component skills. Lang. Cogn. Process. 2003, 18, 443–468. [Google Scholar] [CrossRef]
- Christopher, M.E.; Miyake, A.; Keenan, J.M.; Pennington, B.; DeFries, J.C.; Wadsworth, S.J.; Willcutt, E.; Olson, R.K. Predicting word reading and comprehension with executive function and speed measures across development: A latent variable analysis. J. Exp. Psychol. Gen. 2012, 141, 470–488. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P. The nature and organization of individual differences in executive functions: Four general conclusions. Curr. Dir. Psychol. Sci. 2012, 21, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.J.; McVay, J.C. What mind wandering reveals about executive-control abilities and failures. Curr. Dir. Psychol. Sci. 2012, 21, 348–354. [Google Scholar] [CrossRef]
- Kendeou, P.; McMaster, K.L.; Christ, T.J. Reading Comprehension: Core Components and Processes. Policy Insights Behav. Brain Sci. 2016, 3, 62–69. [Google Scholar] [CrossRef]
- Kintsch, W. The role of knowledge in discourse comprehension: A construction-integration model. Psychol. Rev. 1988, 95, 163. [Google Scholar] [CrossRef]
- Kintsch, W.; van Dijk, T.A. Toward a model of text comprehension and production. Psychol. Rev. 1978, 85, 363–394. [Google Scholar] [CrossRef]
- Perfetti, C.A.; Liu, Y.; Tan, L.H. The lexical constituency model: Some implications of research on chinese for general theories of reading. Psychol. Rev. 2005, 112, 43–59. [Google Scholar] [CrossRef]
- Perfetti, C.; Stafura, J. Word knowledge in a theory of reading comprehension. Sci. Stud. Read. 2014, 18, 22–37. [Google Scholar] [CrossRef]
- Nation, K. Children’s reading difficulties, language, and reflections on the simple view of reading. Aust. J. Learn. Difficulties 2019, 24, 47–73. [Google Scholar] [CrossRef]
- Langer, N.; Benjamin, C.; Minas, J.; Gaab, N. The Neural Correlates of Reading Fluency Deficits in Children. Cereb. Cortex 2015, 25, 1441–1453. [Google Scholar] [CrossRef] [PubMed]
- Berninger, V.W.; Richards, T.L.; Abbott, R.D. Brain and Behavioral Assessment of Executive Functions for Self-Regulating Levels of Language in Reading Brain. J. Nat. Sci. (JNSCI) 2017, 3, 882–886. [Google Scholar] [CrossRef]
- Locascio, G.; Mahone, M.E.; Eason, S.; Cutting, L.E. Executive Dysfunction Among Children with Reading Comprehension Deficits. J. Learn. Disabil. 2010, 43, 441–454. [Google Scholar] [CrossRef]
- Cain, K.; Oakhill, J.; Bryant, P. Children’ s Reading Comprehension Ability: Concurrent Prediction by Working Memory, Verbal Ability, and Component Skills. J. Educ. Psychol. 2004, 96, 31–42. [Google Scholar] [CrossRef]
- Sesma, H.W.; Mahone, E.M.; Levine, T.; Eason, S.H.; Cutting, L.E. The Contribution of Executive Skills to Reading Comprehension. Child Neuropsychol. 2009, 15, 232–246. [Google Scholar] [CrossRef]
- Carretti, B.; Borella, E.; Cornoldi, C.; De Beni, R. Role of working memory in explaining the performance of individuals with specific reading comprehension difficulties: A meta-analysis. Learn. Individ. Differ. 2009, 19, 246–251. [Google Scholar] [CrossRef]
- Nouwens, S.; Groen, M.A.; Verhoeven, L. How working memory relates to children’s reading comprehension: The importance of domain-specificity in storage and processing. Read. Writ. 2017, 30, 105–120. [Google Scholar] [CrossRef]
- Peng, P.; Fuchs, L.S.; Elleman, A.M.; Kearns, D.; Gilbert, J.; Compton, D.L.; Cho, E.; Patton, S. A Longitudinal Analysis of the Trajectories and Predictors of Word Reading and Reading Comprehension Development among At-Risk Readers. J. Learn Disabil. 2019, 52, 195–208. [Google Scholar] [CrossRef]
- Seigneuric, A.; Ehrlich, M.-F.; Oakhill, J.; Yuill, N. Working memory resources and children’s reading comprehension. Read. Writ. 2000, 13, 81–103. [Google Scholar] [CrossRef]
- Follmer, D.J.; Follmer, D.J. Executive Function and Reading Comprehension: A Meta-Analytic Review Executive Function and Reading Comprehension: A Meta-Analytic Review. Educ. Psychol. 2017, 1520, 42–60. [Google Scholar] [CrossRef]
- Nouwens, S.; Groen, M.A.; Kleemans, T.; Verhoeven, L. The role of semantic retrieval in children’s reading comprehension development in the upper primary grades. J. Res. Read. 2018, 41, 597–614. [Google Scholar] [CrossRef]
- De Beni, R.; Palladino, P. Intrusion errors in working memory tasks: Are they related to reading comprehension ability? Learn. Individ. Differ. 2000, 12, 131–143. [Google Scholar] [CrossRef]
- Savage, R. Reading Comprehension Is Not Always the Product of Nonsense Word Decoding and Linguistic Comprehension: Evidence From Teenagers Who Are Extremely Poor Readers. Sci. Stud. Read. 2006, 10, 143–164. [Google Scholar] [CrossRef]
- Barnes, M.; Stuebing, K.; Fletcher, J.; Barth, A.; Francis, D. Cognitive Difficulties in Struggling Comprehenders and Their Relation to Reading Comprehension: A Comparison of Group Selection and Regression-Based Models. J. Res. Educ. Eff. 2016, 9, 153–172. [Google Scholar] [CrossRef] [PubMed]
- De Franchis, V.; Usai, M.C.; Viterbori, P.; Traverso, L. Preschool executive functioning and literacy achievement in Grades 1 and 3 of primary school: A longitudinal study. Learn. Individ. Differ. 2017, 54, 184–195. [Google Scholar] [CrossRef]
- Fenesi, B.; Kim, J.; Shore, D. Reconceptualizing Working Memory in Educational Research. Educ. Psychol. Rev. 2014, in press. [CrossRef]
- Baddeley, A.D.; Hitch, G. Working Memory. In Psychology of Learning and Motivation; Bower, G.H., Ed.; Academic Press: Cambridge, MA, USA, 1974; Volume 8, pp. 47–89. ISBN 0079-7421. [Google Scholar]
- Cowan, N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 1988, 104, 163–191. [Google Scholar] [CrossRef]
- Cowan, N. Working memory capacity. In Working Memory Capacity, 1st ed.; Psychology Press: Hove, UK, 2005; p. 260. [Google Scholar] [CrossRef]
- Vatansever, D.; Menon, D.K.; Manktelow, A.E.; Sahakian, B.J.; Stamatakis, E.A. Default mode network connectivity during task execution. Neuroimage 2015, 122, 96–104. [Google Scholar] [CrossRef]
- Benso, F.; Ardu, E.; Santoro, G.M. MEA:* Measures of Executive Attention. Hogrefe: Göttingen, Germany, 2019. [Google Scholar]
- Bisiacchi, P.S.; Cendron, M.; Gugliotta, M.; Tressoldi, P.; Vio, C. BVN 5-11 Batteria Di Valutazione Neuropsicologica per l’età Evolutiva. Erickson: Trento, Italia, 2005; Volume 1, pp. 1–324. [Google Scholar]
- Lis, A.; Di Nuovo, S. Test Della Grande Figura Complessa Di Rey Traduzione Italiana. Organizzazioni Speciali: Firenze, Italy, 1982. [Google Scholar]
- Hammill, D.; Pearson, N.; Voress, J. Test TPV-Percezione Visiva e Integrazione Visuo-Motoria. Centro Studi Erickson: Trento, Italy, 2003. [Google Scholar]
- Marotta, L.; Trasciani, M.; Vicari, S. Test CMF. Valutazione Delle Competenze Metafonologiche. Con CD-ROM; Edizioni Erickson: Trento, Italy, 2008. [Google Scholar]
- Palladino, P.; Cornoldi, C.; De Beni, R.; Pazzaglia, F. Working memory and updating processes in reading comprehension. Mem. Cogn. 2001, 29, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Mammarella, I.C.; Toso, C.; Pazzaglia, F.; Cornoldi, C. BVS-Corsi. Batteria per La Valutazione Della Memoria Visiva e Spaziale. Con CD-ROM; Edizioni Erickson: Trento, Italy, 2008. [Google Scholar]
- Lubke, G.H.; Muthén, B. Investigating population heterogeneity with factor mixture models. Psychol. Methods 2005, 10, 21–39. [Google Scholar] [CrossRef]
- Arminger, G.; Stein, P.; Wittenberg, J. Mixtures of conditional mean- and covariance-structure models. Psychometrika 1999, 64, 475–494. [Google Scholar] [CrossRef]
- McLachlan, G.; Peel, D. Wiley series in probability and statistics. In Finite Mixture Models; John Wiley and Sons: Hoboken, NJ, USA, 2000; pp. 420–427. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 461–464. [Google Scholar] [CrossRef]
- Hipp, J.R.; Bauer, D.J. Local solutions in the estimation of growth mixture models. Psychol. Methods 2006, 11, 36. [Google Scholar] [CrossRef] [PubMed]
- Bathke, A.C.; Harrar, S.W.; Madden, L.V. How to compare small multivariate samples using nonparametric tests. Comput. Stat. Data Anal. 2008, 52, 4951–4965. [Google Scholar] [CrossRef]
- Burchett, W.W.; Ellis, A.R.; Harrar, S.W.; Bathke, A.C. Nonparametric Inference for Multivariate Data: The R Package npmv. J. Stat. Soft. 2017, 76, 1–18. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. 2019. Available online: https://www.R-Project.org/ (accessed on 14 April 2024).
- Azen, R.; Budescu, D.V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 2003, 8, 129–148. [Google Scholar] [CrossRef]
- Budescu, D.V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 1993, 114, 542. [Google Scholar] [CrossRef]
- Groemping, U. Relative Importance for Linear Regression in R: The Package relaimpo. J. Stat. Soft. 2022, 17, 1–27. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Moscovitch, M.; Umiltà, C. Modularity and neuropsychology: Modules and central processes in attention and memory. In Modular Deficits in Alzheimer-Type Dementia; Issues in the Biology of Language and Cognition; The MIT Press: Cambridge, MA, USA, 1990; pp. 1–59. ISBN 0-262-19298-5. [Google Scholar]
- Baddeley, A.D. Working Memory and Reading. In Processing of Visible Language; Kolers, P.A., Wrolstad, M.E., Bouma, H., Eds.; Springer: Boston, MA, USA, 1979; pp. 355–370. ISBN 978-1-4684-0994-9. [Google Scholar]
- Benso, F.; Clavarezza, V.; Caria, A.; Chiorri, C. Validazione di un modello multicomponenziale della lettura. Dislessia 2013, 10, 39–65. [Google Scholar]
- Snowling, M.J.; Lervåg, A.; Nash, H.M.; Hulme, C. Longitudinal relationships between speech perception, phonological skills and reading in children at high-risk of dyslexia. Dev. Sci. 2019, 1–12. [Google Scholar] [CrossRef] [PubMed]
- McCabe, D.P.; Roediger, H.L., III; McDaniel, M.A.; Balota, D.A.; Hambrick, D.Z. The relationship between working memory capacity and executive functioning: Evidence for a common executive attention construct. Neuropsychology 2010, 24, 222–243. [Google Scholar] [CrossRef] [PubMed]
- Bental, B.; Tirosh, E. The relationship between attention, executive functions and reading domain abilities in attention deficit hyperactivity disorder and reading disorder: A comparative study. J. Child Psychol. Psychiatry Allied Discip. 2007, 48, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Daneman, M.; Carpenter, P.A. Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 1980, 19, 450–466. [Google Scholar] [CrossRef]
- Turner, M.L.; Engle, R.W. Is working memory capacity task dependent? J. Mem. Lang. 1989, 28, 127–154. [Google Scholar] [CrossRef]
- Engle, R.W.; Kane, M.J. Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychol. Learn. Motiv. 2004, 44, 145–200. [Google Scholar]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef]
- Yuill, N.; Oakhill, J.; Parkin, A. Working memory, comprehension ability and the resolution of text anomaly. Br. J. Psychol. 1989, 80, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Benso, F.; Benso, E. The Neuroscientific Principles of Cognitive Training. In Applications of the Benso Method® in Clinical, Educational, Neuromotor, Sports, and Artistic Fields; Hogrefe: Göttingen, Germany, 2023. [Google Scholar]
Language and Executive Attention Domain | Short-Term Memory and Working Memory Domain | Visuo-Spatial and Visuo-Constructive Domain |
---|---|---|
Forward enumeration (MEA; [97]) | Digit span—Forward and Backward (BVN; [98]) | Rey’s Figure—Copy [99] |
Rapid naming of colours (MEA; [97]) | Alpha span (MEA; [97]) | Developmental Visual Perception Test-TPV [100] |
Verbal fluency (CMF Battery; [101]) | Object Updating (adapted from [102]) | Corsi’s Test (Forward and backward; [103]) |
Variable | C1 (n = 17) | C2 (n = 67) | C3 (n = 31) | Post Hoc |
---|---|---|---|---|
TextErr | 2.11 [0.40; 3.81] | 0.16 [−1.04; 1.36] | −0.43 [−0.98; 0.13] | C1 > C2; C1 > C3 |
TextSpeed | −1.95 [−4.35; 0.45] | 0.22 [−1.72; 2.15] | 2.24 [0.19; 4.29] | C3 > C2 > C1 |
PseudowErr | 0.13 [−3.05; 3.30] | −0.74 [−1.17; −0.31] | −0.57 [−0.90; −0.25] | None |
PseudowSpeed | −1.27 [−2.68; 0.15] | 0.28 [−0.81; 1.38] | 2.08 [−1.05; 5.21] | C3 > C1; C2 > C1 |
WordErr | 3.85 [0.56; 7.14] | 0.47 [−1.51; 2.44] | −0.66 [−1.36; 0.04] | C1 > C2; C1 > C3 |
WordSpeed | −1.53 [−3.74; 0.68] | 0.49 [−1.17; 2.16] | 2.29 [0.38; 4.20] | C3 > C2 > C1 |
Box’s M Tests | Shapiro Test for Multivariate Normality | ||||
---|---|---|---|---|---|
Statistic | p-Value | Parameter | Statistic | p-Value | |
Model1 | 27.00 | 0.135 | 20 | 0.91 | <0.001 |
Model2 | 39.30 | <0.001 | 12 | 0.92 | <0.001 |
Model3 | 86.45 | <0.001 | 42 | 0.88 | <0.001 |
Domain | Task | n | F | DFn | DFd | p | Method | η2 [CI 95%] |
---|---|---|---|---|---|---|---|---|
Domain A | Digit Span Forward | 115 | 8.67 | 2 | 47.7 | <0.001 | Welch ANOVA | 0.27 [0.06; 0.43] |
Digit Span Backward | 115 | 9.63 | 2 | 46.2 | <0.001 | Welch ANOVA | 0.29 [0.08; 0.46] | |
Alpha Span | 115 | 8.09 | 2 | 40.6 | 0.001 | Welch ANOVA | 0.28 [0.06; 0.46] | |
Object Updating | 115 | 5.30 | 2 | 36.4 | 0.010 | Welch ANOVA | 0.23 [0.02; 0.41] | |
Domain B | Forward Enumeration | 115 | 9.54 | 2 | 46.4 | <0.001 | Welch ANOVA | 0.29 [0.08; 0.45] |
Color Naming | 115 | 8.72 | 2 | 35.9 | <0.001 | Welch ANOVA | 0.33 [0.07; 0.50] | |
Verbal Fluency | 115 | 6.64 | 2 | 45.3 | 0.003 | Welch ANOVA | 0.23 [0.03; 0.40] | |
Domain C | Corsi Forward | 115 | 5.26 | 2 | 58.1 | 0.008 | Welch ANOVA | 0.15 [0.01; 0.30] |
Corsi Backward | 115 | 6.11 | 2 | 50.6 | 0.004 | Welch ANOVA | 0.19 [0.02; 0.36] | |
Rey Figure—Copy | 115 | 2.31 | 2 | 39.7 | 0.112 | Welch ANOVA | 0.10 [0.00, 0.27] | |
TPV—Copy | 115 | 5.94 | 2 | 38.7 | 0.006 | Welch ANOVA | 0.24 [0.03; 0.41] | |
TPV—Spatial Position | 115 | 1.69 | 2 | 36.4 | 0.199 | Welch ANOVA | 0.09 [0.00, 0.25] | |
TPV—Spatial Relation | 115 | 1.27 | 2 | 34.0 | 0.293 | Welch ANOVA | 0.07 [0.00, 0.23] |
Comparison | Mean Difference [95% CI] | t | df | p-Value | p.adj (Benjamini–Hochberg) | Cohen’s d [95% CI] | ||
---|---|---|---|---|---|---|---|---|
Domain A | Digit Span Forward | 2-1 | 0.37 [0.04; 0.70] | 2.72 | 36.68 | 0.026 | 0.039 | 1.12 [0.56; 1.67] |
3-1 | 0.65 [0.27; 1.03] | 4.17 | 42.28 | 0.000 | 0.001 | 1.34 [0.68; 1.99] | ||
3-2 | 0.28 [−0.06; 0.61] | 2.00 | 63.28 | 0.122 | 0.122 | 0.54 [0.11; 0.97] | ||
Digit Span Backward | 2-1 | 0.18 [0.04; 0.31] | 3.22 | 35.17 | 0.008 | 0.011 | 1.35 [0.78; 1.92] | |
3-1 | 0.31 [0.13; 0.48] | 4.23 | 45.82 | 0.000 | 0.001 | 1.31 [0.65; 1.95] | ||
3-2 | 0.13 [−0.03; 0.29] | 1.96 | 50.17 | 0.133 | 0.133 | 0.60 [0.16; 1.03] | ||
Alpha Span | 2-1 | 0.41 [−0.12; 0.94] | 1.93 | 23.50 | 0.151 | 0.151 | 0.99 [0.43; 1.54] | |
3-1 | 0.80 [0.26; 1.34] | 3.67 | 24.85 | 0.003 | 0.010 | 1.54 [0.86; 2.20] | ||
3-2 | 0.39 [0.06; 0.71] | 2.87 | 75.68 | 0.015 | 0.022 | 0.71 [0.27; 1.15] | ||
Object Updating | 2-1 | 0.58 [−0.33; 1.49] | 1.61 | 19.93 | 0.265 | 0.265 | 0.90 [0.35; 1.44] | |
3-1 | 1.13 [0.18; 2.08] | 2.97 | 24.12 | 0.018 | 0.053 | 1.26 [0.61; 1.90] | ||
3-2 | 0.55 [0.01; 1.09] | 2.45 | 62.16 | 0.044 | 0.067 | 0.67 [0.23; 1.10] | ||
Domain B | Forward Enumeration | 2-1 | −1.30 [−3.34; 0.74] | 1.56 | 34.32 | 0.277 | 0.277 | 0.66 [0.12; 1.20] |
3-1 | −3.35 [−5.37; −1.33] | 4.09 | 30.64 | 0.001 | 0.002 | 1.54 [0.87; 2.21] | ||
3-2 | −2.05 [−3.64; −0.46] | 3.07 | 85.61 | 0.008 | 0.012 | 0.71 [0.27; 1.15] | ||
Color Naming | 2-1 | −7.05 [−12.69; −1.40] | 3.18 | 18.27 | 0.013 | 0.020 | 1.85 [1.24; 2.45] | |
3-1 | −9.20 [−14.96; −3.45] | 4.04 | 20.26 | 0.002 | 0.005 | 1.88 [1.17; 2.57] | ||
3-2 | −2.16 [−4.46; 0.14] | 2.25 | 62.32 | 0.070 | 0.070 | 0.61 [0.18; 1.05] | ||
Verbal Fluency | 2-1 | 3.21 [−0.68; 7.11] | 2.02 | 32.68 | 0.122 | 0.122 | 0.88 [0.33; 1.43] | |
3-1 | 6.93 [2.34; 11.51] | 3.67 | 42.63 | 0.002 | 0.006 | 1.18 [0.53; 1.81] | ||
3-2 | 3.71 [−0.20; 7.63] | 2.28 | 56.79 | 0.067 | 0.100 | 0.65 [0.21; 1.08] | ||
Domain C | TPV—Copy | 2-1 | 2.51 [0.20; 4.83] | 2.72 | 22.91 | 0.032 | 0.047 | 1.41 [0.84; 1.99] |
3-1 | 3.57 [1.04; 6.11] | 3.47 | 31.76 | 0.004 | 0.013 | 1.29 [0.63; 1.93] | ||
3-2 | 1.06 [−0.64; 2.76] | 1.50 | 55.07 | 0.297 | 0.297 | 0.43 [0.00; 0.86] | ||
Corsi Forward | 2-1 | 0.48 [0.04; 0.93] | 2.62 | 62.04 | 0.029 | 0.044 | 0.83 [0.28; 1.37] | |
3-1 | 0.58 [0.07; 1.09] | 2.77 | 45.87 | 0.022 | 0.044 | 0.86 [0.23; 1.47] | ||
3-2 | 0.10 [−0.43; 0.63] | 0.45 | 68.91 | 0.896 | 0.896 | 0.12 [−0.31; 0.54] | ||
Corsi Backward | 2-1 | 0.26 [−0.27; 0.80] | 1.20 | 42.71 | 0.459 | 0.459 | 0.46 [−0.08; 0.99] | |
3-1 | 0.84 [0.25; 1.43] | 3.45 | 43.40 | 0.004 | 0.011 | 1.09 [0.46; 1.72] | ||
3-2 | 0.58 [0.03; 1.13] | 2.53 | 67.98 | 0.036 | 0.055 | 0.66 [0.22; 1.09] |
Domain | Cluster | Variable | N | Mean | Sd |
---|---|---|---|---|---|
Domain A | 1 | Digit Span Forward | 17 | −0.409 | 0.448 |
2 | Digit Span Forward | 67 | −0.037 | 0.674 | |
3 | Digit Span Forward | 31 | 0.239 | 0.619 | |
1 | Digit Span Backward | 17 | −0.251 | 0.184 | |
2 | Digit Span Backward | 67 | −0.073 | 0.266 | |
3 | Digit Span Backward | 31 | 0.056 | 0.318 | |
1 | Alpha Span | 17 | 2.588 | 0.795 | |
2 | Alpha Span | 67 | 3.000 | 0.739 | |
3 | Alpha Span | 31 | 3.387 | 0.558 | |
1 | Object Updating | 16 | 3.062 | 1.340 | |
2 | Object Updating | 67 | 3.642 | 1.083 | |
3 | Object Updating | 31 | 4.194 | 1.014 | |
Domain B | 1 | Color Naming | 17 | 33.882 | 8.831 |
2 | Color Naming | 67 | 26.836 | 4.614 | |
3 | Color Naming | 31 | 24.677 | 4.308 | |
1 | Forward Enumeration | 17 | 16.059 | 2.794 | |
2 | Forward Enumeration | 67 | 14.761 | 3.962 | |
3 | Forward Enumeration | 31 | 12.710 | 2.559 | |
1 | Verbal Fluency | 17 | 18.235 | 5.403 | |
2 | Verbal Fluency | 67 | 21.448 | 7.324 | |
3 | Verbal Fluency | 31 | 25.161 | 7.568 | |
Domain C | 1 | Corsi Forward | 17 | 4.353 | 0.493 |
2 | Corsi Forward | 67 | 4.836 | 1.149 | |
3 | Corsi Forward | 31 | 4.935 | 0.964 | |
1 | Corsi Backward | 17 | 3.706 | 0.686 | |
2 | Corsi Backward | 66 | 3.970 | 1.163 | |
3 | Corsi Backward | 31 | 4.548 | 0.995 | |
1 | TPV—Spatial Rapresentation | 17 | 40.941 | 3.381 | |
2 | TPV—Spatial Rapresentation | 67 | 42.299 | 1.596 | |
3 | TPV—Spatial Rapresentation | 31 | 42.194 | 1.939 | |
1 | Rey Figure—Copy | 17 | 26.618 | 5.547 | |
2 | Rey Figure—Copy | 67 | 29.351 | 4.776 | |
3 | Rey Figure—Copy | 31 | 29.871 | 3.755 | |
1 | TPV—Spatial Position | 17 | 18.824 | 5.659 | |
2 | TPV—Spatial Position | 67 | 20.716 | 3.520 | |
3 | TPV—Spatial Position | 31 | 21.516 | 3.434 | |
1 | TPV—Copy | 17 | 32.941 | 3.473 | |
2 | TPV—Copy | 67 | 35.493 | 3.072 | |
3 | TPV—Copy | 31 | 36.516 | 3.315 |
Predictor | Coef | R2 |
---|---|---|
Alpha Span | 0.11 * | 0.05 [0.00, 0.09] |
Digit Span Forward | 0.24 * | 0.03 [0.00, 0.06] |
Digit Span Backward | 0.43 | 0.04 [0.00, 0.08] |
Updating of Objects | 0.24 | 0.07 [0.00, 0.14] |
Forward Enumeration | 0.03 | 0.00 [−0.01, 0.01] |
Rapid Naming of Colors | 0.02 | 0.03 [−0.01, 0.06] |
Verbal Fluency | 0.03 * | 0.06 [0.00, 0.10] |
Visuo-spatial Span (Corsi Test) Forward | −0.07 | 0.01 [−0.01, 0.02] |
Visuo-spatial Span (Corsi Test) Backward | 0.08 | 0.02 [−0.01, 0.04] |
TPV Subtest Spatial Relation | 0.00 | 0.01 [−0.02, 0.03] |
Rey Figure (Copy) | 0.04 | 0.04 [−0.01, 0.09] |
TPV Subtest Spatial Position | 0.07 | 0.06 [−0.02, 0.12] |
TPV Subtest Copy | −0.01 | 0.01 [−0.01, 0.03] |
Text—Speed | 0.23 * | 0.08 [0.02, 0.14] |
Text—Errors | −0.05 | 0.03 [−0.01, 0.05] |
R2 tot | 0.62 [0.50, 0.73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasqualotto, A.; Mazzoni, N.; Benso, F.; Chiorri, C. Reading Skill Profiles in School-Aged Italian-Speaking Children: A Latent Profile Analysis Investigation into the Interplay of Decoding, Comprehension and Attentional Control. Brain Sci. 2024, 14, 390. https://doi.org/10.3390/brainsci14040390
Pasqualotto A, Mazzoni N, Benso F, Chiorri C. Reading Skill Profiles in School-Aged Italian-Speaking Children: A Latent Profile Analysis Investigation into the Interplay of Decoding, Comprehension and Attentional Control. Brain Sciences. 2024; 14(4):390. https://doi.org/10.3390/brainsci14040390
Chicago/Turabian StylePasqualotto, Angela, Noemi Mazzoni, Francesco Benso, and Carlo Chiorri. 2024. "Reading Skill Profiles in School-Aged Italian-Speaking Children: A Latent Profile Analysis Investigation into the Interplay of Decoding, Comprehension and Attentional Control" Brain Sciences 14, no. 4: 390. https://doi.org/10.3390/brainsci14040390