A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Aptasensors for CBZ Detection
2.3. Electrochemical Measurements
2.4. Recovery Tests for CBZ
3. Results and Discussion
3.1. Material Characterization
3.2. Electrochemical Performance
3.3. Feasibility of the Aptasensor for CBZ Detection
3.4. Optimization of Experimental Parameters
3.5. Electrochemical Detection of CBZ
3.6. Selectivity, Repeatability, and Stability Characterization
3.7. Regeneration of the Apt-Pt-rGO/GCE Sensor
3.8. Recovery Test for CBZ in Skim Milk and Tap Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, T.; Ding, T.; Liu, D.; Li, J. Degradation of carbendazim in soil: Effect of sewage sludge-derived biochars. J. Agric. Food Chem. 2020, 68, 3703–3710. [Google Scholar] [CrossRef]
- Farooq, S.; Nie, J.; Cheng, Y.; Bacha, S.A.S.; Chang, W. Selective extraction of fungicide carbendazim in fruits using β-cyclodextrin based molecularly imprinted polymers. J. Sep. Sci. 2020, 43, 1145–1153. [Google Scholar] [CrossRef]
- Crapnell, R.D.; Adarakatti, P.S.; Banks, C.E. Electroanalytical overview: The sensing of carbendazim. Anal. Methods 2023, 15, 4811–4826. [Google Scholar] [CrossRef] [PubMed]
- Gil García, M.D.; Martínez Galera, M.; Uclés, S.; Lozano, A.; Fernández-Alba, A.R. Ultrasound-assisted extraction based on QuEChERS of pesticide residues in honeybees and determination by LC-MS/MS and GC-MS/MS. Anal. Bioanal. Chem. 2018, 410, 5195–5210. [Google Scholar] [CrossRef]
- Scheel, G.L.; Teixeira Tarley, C.R. Simultaneous microextraction of carbendazim, fipronil and picoxystrobin in naturally and artificial occurring water bodies by water-induced supramolecular solvent and determination by HPLC-DAD. J. Mol. Liq. 2020, 297, 111897. [Google Scholar] [CrossRef]
- Wang, S.; Su, L.; Wang, L.; Zhang, D.; Shen, G.; Ma, Y. Colorimetric determination of carbendazim based on the specific recognition of aptamer and the poly-diallyldimethylammonium chloride aggregation of gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117809. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Wang, S.; Wang, L.; Yan, Z.; Yi, H.; Zhang, D.; Shen, G.; Ma, Y. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching Rhodamine B. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 225, 117511. [Google Scholar] [CrossRef] [PubMed]
- Xiaowei, H.; Zhang, N.; Zhihua, L.; Shi, J.; Tahir, H.E.; Sun, Y.; Zhang, Y.; Zhang, X.; Holmes, M.; Xiaobo, Z. Rapid detection of carbendazim residue in apple using surface-enhanced Raman scattering and coupled chemometric algorithm. Foods 2022, 11, 1287. [Google Scholar] [CrossRef] [PubMed]
- Severo, F.J.R.; Lourenço, A.S.; Moreira, E.D.T.; Silva, A.C.; Araujo, M.C.U.; Bichinho, K.M. A square-wave anodic stripping voltammetric method for determining carbendazim in pineapple and orange juices without sample pre-treatment. J. Food Compos. Anal. 2024, 125, 105823. [Google Scholar] [CrossRef]
- Venegas, C.J.; Rodríguez, L.; Sierra-Rosales, P. Selective label-free electrochemical aptasensor based on carbon nanotubes for carbendazim detection. Chemosensors 2023, 11, 117. [Google Scholar] [CrossRef]
- Eissa, S.; Zourob, M. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Anal. Chem. 2017, 89, 3138–3145. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Qin, Y.; Liu, X.; Li, Y.; Lin, Z.; Nie, R.; Shi, Y.; Huang, H. Electrochemical biosensor based on well-dispersed boron nitride colloidal nanoparticles and DNA aptamers for ultrasensitive detection of carbendazim. ACS Omega 2021, 6, 27405–27411. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Chen, Z.; Li, L.; You, T. An ultra-sensitive aptasensor based on carbon nanohorns/gold nanoparticles composites for impedimetric detection of carbendazim at picogram levels. J. Colloid. Interface Sci. 2019, 546, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Ruiyi, L.; Nana, L.; Xiulan, S.; Haiyan, Z.; Guangli, W.; Zaijun, L. Electrochemical detection of carbendazim with mulberry fruit-like gold nanocrystal/multiple graphene aerogel and DNA cycle amplification. Microchim. Acta 2021, 188, 284. [Google Scholar] [CrossRef] [PubMed]
- Khosropour, H.; Maeboonruan, N.; Sriprachuabwong, C.; Tuantranont, A.; Laiwattanapaisal, W. A new double signal on electrochemical aptasensor based on gold nanoparticles/graphene nanoribbons/MOF-808 as enhancing nanocomposite for ultrasensitive and selective detection of carbendazim. OpenNano 2022, 8, 100086. [Google Scholar] [CrossRef]
- Duc Le, T.; Ahemad, M.J.; Kim, D.-S.; Lee, B.-H.; Oh, G.-J.; Shin, G.-S.; Nagappagari, L.R.; Dao, V.; Van Tran, T.; Yu, Y.-T. Synergistic effect of Pt-Ni dual single-atoms and alloy nanoparticles as a high-efficiency electrocatalyst to minimize Pt utilization at cathode in polymer electrolyte membrane fuel cells. J. Colloid. Interface Sci. 2023, 634, 930–939. [Google Scholar] [CrossRef]
- Duan, Q.; Wang, L.; Wang, F.; Zhang, H.; Liu, N. Facile one-step electrodeposition preparation of cationic pillar[6]arene-modified graphene films on glassy carbon electrodes for enhanced electrochemical performance. Front. Chem. 2020, 8, 430. [Google Scholar] [CrossRef] [PubMed]
- Pushparajah, S.; Hasegawa, S.; Pham, T.S.H.; Shafiei, M.; Yu, A. Facile Synthesis of Platinum Nanoparticle-Embedded Reduced Graphene Oxide for the Detection of Carbendazim. Materials 2023, 16, 7622. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Kan, X. Aptamer and molecularly imprinted polymer: Synergistic recognition and sensing of dopamine. Electrochim. Acta 2021, 367, 137433. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.; Tan, M.; Liu, H.; Ma, Q.; Xu, Q.; Pollet, B.G.; Su, H. Electrodeposited platinum with various morphologies on carbon paper as efficient and durable self-supporting electrode for methanol and ammonia oxidation reactions. Int. J. Hydrogen Energy 2023, 48, 2617–2627. [Google Scholar] [CrossRef]
- Li, G.; Li, W.; Li, S.; Li, X.; Yao, X.; Xue, W.; Liang, J.; Chen, J.; Zhou, Z. A label-free electrochemical aptasensor based on platinum@palladium nanoparticles decorated with hemin-reduced graphene oxide as a signal amplifier for glypican-3 determination. Biomater. Sci. 2022, 10, 6804–6817. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, M.; Liang, J.; Lu, C.; Zhang, M.; Hu, F.; Zhou, Z.; Li, G. Electrochemical aptasensor for analyzing alpha-fetoprotein using RGO–CS–Fc nanocomposites integrated with gold–platinum nanoparticles. Anal. Methods 2020, 12, 4956–4966. [Google Scholar] [CrossRef]
- Liu, H.; Feng, Y.; Cao, H.; Yang, J. Pt-containing Ag2S-noble metal nanocomposites as highly active electrocatalysts for the oxidation of formic acid. Nanomicro Lett. 2014, 6, 252–257. [Google Scholar] [CrossRef]
- Kwon, K.; Jin, S.-A.; Pak, C.; Chang, H.; Joo, S.H.; Lee, H.I.; Kim, J.H.; Kim, J.M. Enhancement of electrochemical stability and catalytic activity of Pt nanoparticles via strong metal-support interaction with sulfur-containing ordered mesoporous carbon. Catal. Today 2011, 164, 186–189. [Google Scholar] [CrossRef]
- Dablemont, C.; Lang, P.; Mangeney, C.; Piquemal, J.-Y.; Petkov, V.; Herbst, F.; Viau, G. FTIR and XPS Study of Pt Nanoparticle Functionalization and Interaction with Alumina. Langmuir 2008, 24, 5832–5841. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Agrios, A.G. Attachment of Pt nanoparticles to a metal oxide surface using a thiol–carboxyl bifunctional molecule. J. Colloid. Interface Sci. 2018, 513, 464–469. [Google Scholar] [CrossRef]
- Yang, J.; Zou, J.; Zhong, W.; Zou, J.; Gao, Y.; Liu, S.; Zhang, S.; Lu, L. Electrochemical aptasensor based on Au nanoparticles decorated porous carbon derived from metal-organic frameworks for ultrasensitive detection of chloramphenicol. Molecules 2022, 27, 6842. [Google Scholar] [CrossRef]
- Belleperche, M.; DeRosa, M.C. pH-control in aptamer-based diagnostics, therapeutics, and analytical applications. Pharmaceuticals 2018, 11, 80. [Google Scholar] [CrossRef]
- Yamuna, A.; Chen, T.W.; Chen, S.M.; Jiang, T.Y. Facile synthesis of single-crystalline Fe-doped copper vanadate nanoparticles for the voltammetric monitoring of lethal hazardous fungicide carbendazim. Mikrochim. Acta 2021, 188, 277. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Sun, C.; Huang, C.; Zhu, B.; Zhang, Q.; Chen, D. Aptamer-based sensor for specific recognition of malathion in fruits and vegetables by surface-enhanced Raman spectroscopy and electrochemistry combination. Anal. Chim. Acta 2022, 1221, 340148. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, T.L.; Dong, Y.; Li, J. A wireless, regeneratable cocaine sensing scheme enabled by allosteric regulation of pH sensitive aptamers. ACS Nano 2022, 16, 20922–20936. [Google Scholar] [CrossRef]
- Zhu, P.; Papadimitriou, V.A.; van Dongen, J.E.; Cordeiro, J.; Neeleman, Y.; Santoso, A.; Chen, S.; Eijkel, J.C.T.; Peng, H.; Segerink, L.I.; et al. An optical aptasensor for real-time quantification of endotoxin: From ensemble to single-molecule resolution. Sci. Adv. 2023, 9, eadf5509. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Chen, S.; Wang, Q.; Li, J. Recent progresses in biosensor regeneration techniques. Nanoscale 2024, 16, 2834–2846. [Google Scholar] [CrossRef]
- Onaş, A.M.; Dascălu, C.; Raicopol, M.D.; Pilan, L. Critical design factors for electrochemical aptasensors based on target-induced conformational changes: The cse of small-molecule targets. Biosensors 2022, 12, 816. [Google Scholar] [CrossRef]
Mixture | Added (nM) | Found (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Buffer: skim milk (1:1) | 14 | 13.7 | 98 | 3.6 |
12 | 12.0 | 100 | 1.0 | |
3.0 | 3.1 | 103 | 2.1 | |
1.0 | 0.9 | 90 | 0.9 | |
Buffer: tap water (1:1) | 15 | 15.0 | 100 | 0.9 |
13 | 12.0 | 92 | 0.6 | |
3.0 | 3.0 | 100 | 1.8 | |
1.0 | 0.9 | 90 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pushparajah, S.; Shafiei, M.; Yu, A. A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection. Biosensors 2025, 15, 15. https://doi.org/10.3390/bios15010015
Pushparajah S, Shafiei M, Yu A. A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection. Biosensors. 2025; 15(1):15. https://doi.org/10.3390/bios15010015
Chicago/Turabian StylePushparajah, Suthira, Mahnaz Shafiei, and Aimin Yu. 2025. "A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection" Biosensors 15, no. 1: 15. https://doi.org/10.3390/bios15010015
APA StylePushparajah, S., Shafiei, M., & Yu, A. (2025). A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection. Biosensors, 15(1), 15. https://doi.org/10.3390/bios15010015