Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use
Abstract
:1. Introduction
2. Polysaccharide Hydrogels
3. Hydrogel-Assisted Biosensing Platforms
3.1. Integration with Paper-Based Analytical Devices (PADs)
Polysaccharide Hydrogel | Target Analyte | Sensing Components | Confirmation | Matrix | Detection Range | Limit of Detection | Response Time | Stability Test | Reference |
---|---|---|---|---|---|---|---|---|---|
Agarose | Dengue Virus RNA | Au Nanoparticle (AuNP) | Naked Eye | Buffer | N/A | 50 copies | N/A | N/A | 2016 [34] |
Alginate | Glucose | CdZnTeS QD /GOx | Smartphone | N/A | 100 to 1000 μM | 1.1 μM | 10 m | N/A | 2021 [35] |
Glucose | GOx /HRP/TMB | Smartphone | PBS | 0.36 to 15 mM | 0.12 mM | 12 m | 40 d | 2021 [30] | |
Whole Blood | 2.20 to 15 mM | (0.12 mM) ** | |||||||
L-lactate D-lactate | LDH/ GPT | Smartphone | PBS | 0.1 to 3.0 mM 0.01 to 0.5 mM | 30.0 ± 0.7 μM 3.0 ± 0.2 μM | 20 m | 40 d | 2023 [36] | |
L-lactate | Rhodamine B /LDH/CaCO3 | Visual Distance | N/A | 0.1 to 15 mM | 0.03 μM | 10 m | N/A | 2024 [31] | |
Smartphone | N/A | 0.3 to 15 mM | 0.07 μM | N/A | |||||
Chitosan | Glucose | GOx/HRP/ 4-AAP/DHBS | Naked Eye | PBS | 0.1 to 5 mM | 23 μM | 15 m | 10 d | 2016 [33] |
Uric Acid | Uricase/HRP/ 4-AAP/DHBS | Naked Eye | PBS | 0.1 to 5 mM | 37 μM | ||||
Hepatitis B Virus DNA | AuNP | Naked Eye | N/A | 2.5 to 20 nM | 0.05 nM | 15 m | N/A | 2020 [32] |
3.2. Integration with Microfluidic Devices
Polysaccharide Hydrogel | Target Analyte | Sensing Components | Confirmation | Matrix | Detection Range | Limit of Detection | Response Time | Stability Test | Reference |
---|---|---|---|---|---|---|---|---|---|
Agarose | AST ALT ALP | Au-LDO TMB/H2O2 | Smartphone | Buffer | 15 to 150 U/L 10 to 180 U/L 5 to 70 U/L | 15 U/L 10 U/L 5 U/L | 30 m | 12 h-tracking | 2022 [43] |
Alginate | Glucose | GOx | LCR meter | PBS | 2 to 8 mM | 0.0625 mM | 20 s | N/A | 2013 [41] |
Urea | Urease | 1 to 16 mM | 0.001 mM | ||||||
Creatinine | Creatinine Deiminase | 0.01 to 10 mM | 0.001 mM | ||||||
Lactate | QD, Lactate Oxidase | Smartphone | Tris Buffer | 0.1 to 1.0 mM | 1.25 μM | 15 m | 15 d | 2021 [44] | |
Glucose | GOx/HRP /TMB/TiO2 | Digital Camera | Artificial Sweat | 10 to 1000 μM | 7.7 μM | 16 m | N/A | 2023 [45] |
3.3. Independent Hydrogel Platforms
Polysaccharide Hydrogel | Target Analyte | Sensing Components | Confirmation | Matrix | Detection Range | Limit of Detection | Response Time | Stability Test | Reference |
---|---|---|---|---|---|---|---|---|---|
Agarose | Glucose | Ag@Pt GOx, TMB | Spectrophotometer | Diluted Serum | 5 to 55 μM | 2.4 μM | N/A | 12 h | 2017 [52] |
Acetylcholine | Choline Oxidase, Mimic Peroxidase (Nanoflowers) | Smartphone | Tris-HCl Buffer | 5 to 6000 μM | 0.25 mM | 60 m | 15 d | 2019 [53] | |
Gallic acid | Au@Ag Core–Shell Nanostars | Smartphone | N/A | 5.0 to 100 μM | 9.82 μM | 30 m | 5 d | 2023 [51] | |
Cystine | N/A | 5.0 to 100 μM | 8.77 μM | ||||||
Alginate | Oxalate | MnO2/ TMB | Smartphone | Acetate Buffer | 0.8 to 800 M | 0.8 μM | 10 m | 7 d | 2020 [54] |
Hepatitis B virus Surface Antigen (HBsAg) | ALP/ Pyrophosphate Ion/ anti-HBsAg Antibody | Smartphone | Buffer | 1.56 to 50 mU/mL | 0.24 ng/mL | 30 m | N/A | 2020 [55] | |
Lactate | TiO2 Nanotube/LOx/GOx/HRP/TMB | Digital Camera | Artificial Sweat | 0.1 to 1 mM | 0.069 mM | 4 m | 10 d | 2021 [56] | |
Glucose | 0.1 to 0.8 mM | 0.044 mM | 6 m | ||||||
Cholesterol | HRP/COD/ Luminol | Smartphone | Isopropanol + Triton X-100 | 0.01 to 0.35 mM | 7.2 μM | 1 m | 10 d | 2021 [50] | |
Uric Acid | CdZnTeS QDs/ Urate Oxidase | Smartphone | N/A | 100 to 900 μM | 20.3 μM | 10 m | 15 d | 2021 [48] | |
Spectrophotometer | 1 to 100 μM | 0.8 μM | |||||||
Latate | Lactate Oxidase/HRP/TMB | Digital Camera | Artificial Sweat | 10 to 100 mM | 6.4 mM | 13 m | N/A | 2021 [57] | |
Carbamate (Pesticide in Tea) | Upconversion NP/Dopamine/AChE/ATCh/ | Smartphone | Tris-HCl Buffer | 0.05 to 100 ng/mL | 0.05 ng/mL | 60 m | N/A | 2021 [49] | |
Paraoxon (Pesticide in Chinese Cabbages) | Au Nanoclusters -anchored MnO2/ AChE/ATCh/ | Smartphone | Tris-HCl Buffer | 5.0 to 500 ng/mL | 5.0 ng/mL | 65 m | 10 d | 2022 [58] | |
Glucose | GOx/POD/PAA Defective ZIF-8 | Smartphone | N/A | 0.05 to 4 mM | 0.05 mM | 15 m | 30 d | 2022 [47] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- St-Louis, P. Status of Point-of-Care Testing: Promise, Realities, and Possibilities. Clin. Biochem. 2000, 33, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Nichols, J.H. Point of Care Testing. Clin. Lab. Med. 2007, 27, 893–908. [Google Scholar] [CrossRef]
- Hayden, O.; Luppa, P.B.; Min, J. Point-of-Care Testing—New Horizons for Cross-Sectional Technologies and Decentralized Application Strategies. Anal. Bioanal. Chem. 2022, 414, 3161–3163. [Google Scholar] [CrossRef]
- Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-Care Testing (POCT): Current Techniques and Future Perspectives. TrAC Trends Anal. Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef]
- Gubala, V.; Harris, L.F.; Ricco, A.J.; Tan, M.X.; Williams, D.E. Point of Care Diagnostics: Status and Future. Anal. Chem. 2012, 84, 487–515. [Google Scholar] [CrossRef]
- Brendish, N.J.; Poole, S.; Naidu, V.V.; Mansbridge, C.T.; Norton, N.J.; Wheeler, H.; Presland, L.; Kidd, S.; Cortes, N.J.; Borca, F.; et al. Clinical Impact of Molecular Point-of-Care Testing for Suspected COVID-19 in Hospital (COV-19POC): A Prospective, Interventional, Non-Randomised, Controlled Study. Lancet Respir. Med. 2020, 8, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Binnicker, M.J. Challenges and Controversies to Testing for COVID-19. J. Clin. Microbiol. 2020, 58, e01695-20. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Min, J. Advances in Nanobiosensors during the COVID-19 Pandemic and Future Perspectives for the Post-COVID Era. Nano Converg. 2024, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Peppas, N.A.; Hilt, J.Z.; Khademhosseini, A.; Langer, R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology. Adv. Mater. 2006, 18, 1345–1360. [Google Scholar] [CrossRef]
- Calvert, P. Hydrogels for Soft Machines. Adv. Mater. 2009, 21, 743–756. [Google Scholar] [CrossRef]
- Robyt, J.F. Essentials of Carbohydrate Chemistry; Springer New York: New York, NY, USA, 1998; pp. 157–227. [Google Scholar]
- Chaudhary, S.; Jain, V.P.; Jaiswar, G. Innovation in Nano-Polysaccharides for Eco-Sustainability; Elsevier: Amsterdam, The Netherlands, 2022; pp. 83–118. [Google Scholar]
- Ramesh, H.P.; Tharanathan, R.N. Carbohydrates—The Renewable Raw Materials of High Biotechnological Value. Crit. Rev. Biotechnol. 2003, 23, 149–173. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, A.; Li, X.; Sun, L.; Guo, Y. An Overview of Classifications, Properties of Food Polysaccharides and Their Links to Applications in Improving Food Textures. Trends Food Sci. Technol. 2020, 102, 1–15. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Bu, J.; Lee, T.H.; Jeong, W.; Poellmann, M.J.; Mudd, K.; Eun, H.S.; Liu, E.W.; Hong, S.; Hyun, S.H. Enhanced Detection of Cell-Free DNA (cfDNA) Enables Its Use as a Reliable Biomarker for Diagnosis and Prognosis of Gastric Cancer. PLoS ONE 2020, 15, e0242145. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Rawding, P.A.; Bu, J.; Hyun, S.; Rou, W.; Jeon, H.; Kim, S.; Lee, B.; Kubiatowicz, L.J.; Kim, D.; et al. Machine-Learning-Based Clinical Biomarker Using Cell-Free DNA for Hepatocellular Carcinoma (HCC). Cancers 2022, 14, 2061. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Jeon, H.J.; Choi, J.H.; Kim, Y.J.; Hwangbo, P.-N.; Park, H.S.; Son, C.Y.; Choi, H.-G.; Kim, H.N.; Chang, J.W.; et al. A High-Sensitivity cfDNA Capture Enables to Detect the BRAF V600E Mutation in Papillary Thyroid Carcinoma. Korean J. Chem. Eng. 2023, 40, 429–435. [Google Scholar] [CrossRef]
- Kim, Y.J.; Min, J. Hydrogel-Based Technologies in Liquid Biopsy for the Detection of Circulating Clinical Markers: Challenges and Prospects. Anal. Bioanal. Chem. 2023, 416, 2065–2078. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Cho, Y.-H.; Min, J.; Han, S.-W. Circulating Tumor Marker Isolation with the Chemically Stable and Instantly Degradable (CSID) Hydrogel ImmunoSpheres. Anal. Chem. 2021, 93, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Negishi, R.; Takai, K.; Tanaka, T.; Matsunaga, T.; Yoshino, T. High-Throughput Manipulation of Circulating Tumor Cells Using a Multiple Single-Cell Encapsulation System with a Digital Micromirror Device. Anal. Chem. 2018, 90, 9734–9741. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang, C.J. Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (μDiSH-PAD) for Visual Quantitative Point-of-Care Testing. Anal. Chem. 2016, 88, 2345–2352. [Google Scholar] [CrossRef]
- He, G.; Zhao, S.; Yang, C.; Chen, L.; Liu, Y.; Hu, Q.; Yang, Y. Point-of-Care Monitoring of Milk Quality by Rapid Immunofluorescence with Mechanical Deformation of the Hydrogel Microspheres. Sens. Actuators B Chem. 2024, 417, 136160. [Google Scholar] [CrossRef]
- Wu, Y.; Li, P.; Yang, L.; Liu, J. Individual SERS Substrate with Core–Satellite Structure Decorated in Shrinkable Hydrogel Template for Pesticide Detection. J. Raman Spectrosc. 2014, 45, 68–74. [Google Scholar] [CrossRef]
- Qi, G.; Wang, Y.; Liu, T.; Sun, D. “On-Site” Analysis of Pesticide Residues in Complex Sample Matrix by Plasmonic SERS Nanostructure Hybridized Hydrogel. Anal. Chim. Acta 2023, 1282, 341903. [Google Scholar] [CrossRef]
- Du, G.; Nie, L.; Gao, G.; Sun, Y.; Hou, R.; Zhang, H.; Chen, T.; Fu, J. Tough and Biocompatible Hydrogels Based on in Situ Interpenetrating Networks of Dithiol-Connected Graphene Oxide and Poly(Vinyl Alcohol). ACS Appl. Mater. Interfaces 2015, 7, 3003–3008. [Google Scholar] [CrossRef]
- Kim, Y.J.; Min, J. Property Modulation of the Alginate-Based Hydrogel via Semi-Interpenetrating Polymer Network (Semi-IPN) with Poly(Vinyl Alcohol). Int. J. Biol. Macromol. 2021, 193, 1068–1077. [Google Scholar] [CrossRef]
- Nery, E.W.; Kubota, L.T. Sensing Approaches on Paper-Based Devices: A Review. Anal. Bioanal. Chem. 2013, 405, 7573–7595. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T.J.; Xu, F. Advances in Paper-Based Point-of-Care Diagnostics. Biosens. Bioelectron. 2014, 54, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Khan, H.; Yang, L. Hydrogel Paper-Based Analytical Devices: Separation-Free In Situ Assay of Small-Molecule Targets in Whole Blood. Anal. Chem. 2021, 93, 14755–14763. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Cai, Y.; Liu, Z.; Yang, H.; Xie, H.; Liu, J.; Yang, S. Sodium Alginate Hydrogelation Mediated Paper-Based POCT Sensor for Visual Distance Reading and Smartphone-Assisted Colorimetric Dual-Signal Determination of L -Lactate. Anal. Methods 2024, 16, 2077–2084. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.H.; Li, M.; Liu, L.N.; Zhang, S.F.; Alam, N.; You, M.; Ni, Y.H.; Li, Z.D. Chitosan-Modified Nitrocellulose Membrane for Paper-Based Point-of-Care Testing. Cellulose 2020, 27, 3835–3846. [Google Scholar] [CrossRef]
- Gabriel, E.F.M.; Garcia, P.T.; Cardoso, T.M.G.; Lopes, F.M.; Martins, F.T.; Coltro, W.K.T. Highly Sensitive Colorimetric Detection of Glucose and Uric Acid in Biological Fluids Using Chitosan-Modified Paper Microfluidic Devices. Analyst 2016, 141, 4749–4756. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.R.; Yong, K.W.; Tang, R.; Gong, Y.; Wen, T.; Yang, H.; Li, A.; Chia, Y.C.; Pingguan-Murphy, B.; Xu, F. Lateral Flow Assay Based on Paper–Hydrogel Hybrid Material for Sensitive Point-of-Care Detection of Dengue Virus. Adv. Healthc. Mater. 2017, 6, 1600920. [Google Scholar] [CrossRef]
- Lu, F.; Yang, S.; Ning, Y.; Wang, F.; Ji, X.; He, Z. A Fluorescence Color Card for Point-of-Care Testing (POCT) and Its Application in Simultaneous Detection. Analyst 2021, 146, 5074–5080. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, M.; Li, M.; Yang, J.; Yang, L. Paper-Based Chiral Biosensors Using Enzyme Encapsulation in Hydrogel Network for Point-of-Care Detection of Lactate Enantiomers. Anal. Chim. Acta 2023, 1279, 341834. [Google Scholar] [CrossRef]
- Linder, V. Microfluidics at the Crossroad with Point-of-Care Diagnostics. Analyst 2007, 132, 1186. [Google Scholar] [CrossRef] [PubMed]
- Erickson, D.; Li, D. Integrated Microfluidic Devices. Anal. Chim. Acta 2004, 507, 11–26. [Google Scholar] [CrossRef]
- Hatch, A.; Hansmann, G.; Murthy, S.K. Engineered Alginate Hydrogels for Effective Microfluidic Capture and Release of Endothelial Progenitor Cells from Whole Blood. Langmuir 2011, 27, 4257–4264. [Google Scholar] [CrossRef]
- Li, Y.; Yan, X.; Feng, X.; Wang, J.; Du, W.; Wang, Y.; Chen, P.; Xiong, L.; Liu, B.-F. Agarose-Based Microfluidic Device for Point-of-Care Concentration and Detection of Pathogen. Anal. Chem. 2014, 86, 10653–10659. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Wang, S.-H.; Wu, M.-H.; Pan, T.-M.; Lai, C.-S.; Luo, J.-D.; Chiou, C.-C. Integrating Solid-State Sensor and Microfluidic Devices for Glucose, Urea and Creatinine Detection Based on Enzyme-Carrying Alginate Microbeads. Biosens. Bioelectron. 2013, 43, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Goy, C.B.; Chaile, R.E.; Madrid, R.E. Microfluidics and Hydrogel: A Powerful Combination. React. Funct. Polym. 2019, 145, 104314. [Google Scholar] [CrossRef]
- Liu, X.; Mei, X.; Yang, J.; Li, Y. Hydrogel-Involved Colorimetric Platforms Based on Layered Double Oxide Nanozymes for Point-of-Care Detection of Liver-Related Biomarkers. ACS Appl. Mater. Interfaces 2022, 14, 6985–6993. [Google Scholar] [CrossRef]
- Yang, S.; Lu, F.; Liu, Y.; Ning, Y.; Tian, S.; Zuo, P.; Ji, X.; He, Z. Quantum Dots-Based Hydrogel Microspheres for Visual Determination of Lactate and Simultaneous Detection Coupled with Microfluidic Device. Microchem. J. 2021, 171, 106801. [Google Scholar] [CrossRef]
- Garcia-Rey, S.; Gil-Hernandez, E.; Gunatilake, U.B.; Basabe-Desmonts, L.; Benito-Lopez, F. Development of an Alginate/TiO2-Based Microfluidic Biosystem for Chrono-Sampling and Sensing of Glucose in Artificial Sweat. Sens. Actuators B Chem. 2023, 382, 133514. [Google Scholar] [CrossRef]
- Punjabi, K.; Adhikary, R.R.; Patnaik, A.; Bendale, P.; Saxena, S.; Banerjee, R. Lectin-Functionalized Chitosan Nanoparticle-Based Biosensor for Point-of-Care Detection of Bacterial Infections. Bioconjug. Chem. 2022, 33, 1552–1563. [Google Scholar] [CrossRef]
- Zhong, N.; Gao, R.; Shen, Y.; Kou, X.; Wu, J.; Huang, S.; Chen, G.; Ouyang, G. Enzymes-Encapsulated Defective Metal–Organic Framework Hydrogel Coupling with a Smartphone for a Portable Glucose Biosensor. Anal. Chem. 2022, 94, 14385–14393. [Google Scholar] [CrossRef]
- Lu, F.; Yang, Y.; Liu, Y.; Wang, F.; Ji, X.; He, Z. Point-of-Care Testing (POCT) of Patients with a High Concentration of Uric Acid by Using Alginate Hydrogel Microspheres Embedded with CdZnTeS QDs and Urate Oxidase (Alg@QDs-UOx MSs). Analyst 2021, 146, 949–955. [Google Scholar] [CrossRef]
- Su, D.; Zhao, X.; Yan, X.; Han, X.; Zhu, Z.; Wang, C.; Jia, X.; Liu, F.; Sun, P.; Liu, X.; et al. Background-Free Sensing Platform for on-Site Detection of Carbamate Pesticide through Upconversion Nanoparticles-Based Hydrogel Suit. Biosens. Bioelectron. 2021, 194, 113598. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Lu, F.; Liu, Y.; Yang, S.; Wang, F.; Ji, X.; He, Z. Glow-Type Chemiluminescent Hydrogels for Point-of-Care Testing (POCT) of Cholesterol. Analyst 2021, 146, 4775–4780. [Google Scholar] [CrossRef]
- Yi, J.; Wang, Z.; Hu, J.; Yu, T.; Wang, Y.; Ge, P.; Xianyu, Y. Point-of-Care Detection of Antioxidant in Agarose-Based Test Strip through Antietching of Au@Ag Nanostars. ACS Appl. Mater. Interfaces 2023, 15, 29789–29800. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Huang, P.; Wu, F.-Y. Gold–Platinum Bimetallic Nanoclusters with Enhanced Peroxidase-like Activity and Their Integrated Agarose Hydrogel-Based Sensing Platform for the Colorimetric Analysis of Glucose Levels in Serum. Analyst 2017, 142, 4106–4115. [Google Scholar] [CrossRef]
- Kong, D.; Jin, R.; Zhao, X.; Li, H.; Yan, X.; Liu, F.; Sun, P.; Gao, Y.; Liang, X.; Lin, Y.; et al. Protein–Inorganic Hybrid Nanoflower-Rooted Agarose Hydrogel Platform for Point-of-Care Detection of Acetylcholine. ACS Appl. Mater. Interfaces 2019, 11, 11857–11864. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zhao, L.; Yan, X.; Han, X.; Liu, M.; Chen, Y.; Li, Q.; Su, D.; Liu, F.; Sun, P.; et al. Lab in Hydrogel Portable Kit: On-Site Monitoring of Oxalate. Biosens. Bioelectron. 2020, 167, 112457. [Google Scholar] [CrossRef]
- Zheng, W.; Gao, C.; Shen, L.; Qu, C.; Zhang, X.; Yang, L.; Feng, Q.; Tang, R. Alginate Hydrogel-Embedded Capillary Sensor for Quantitative Immunoassay with Naked Eye. Sensors 2020, 20, 4831. [Google Scholar] [CrossRef] [PubMed]
- Gunatilake, U.B.; Garcia-Rey, S.; Ojeda, E.; Basabe-Desmonts, L.; Benito-Lopez, F. TiO2 Nanotubes Alginate Hydrogel Scaffold for Rapid Sensing of Sweat Biomarkers: Lactate and Glucose. ACS Appl. Mater. Interfaces 2021, 13, 37734–37745. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rey, S.; Ojeda, E.; Gunatilake, U.B.; Basabe-Desmonts, L.; Benito-Lopez, F. Alginate Bead Biosystem for the Determination of Lactate in Sweat Using Image Analysis. Biosensors 2021, 11, 379. [Google Scholar] [CrossRef]
- Li, H.; Zou, R.; Su, C.; Zhang, N.; Wang, Q.; Zhang, Y.; Zhang, T.; Sun, C.; Yan, X. Ratiometric Fluorescent Hydrogel for Point-of-Care Monitoring of Organophosphorus Pesticide Degradation. J. Hazard. Mater. 2022, 432, 128660. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-U.; Kim, Y.J.; Lee, T.H. Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use. Biosensors 2025, 15, 13. https://doi.org/10.3390/bios15010013
Kim S-U, Kim YJ, Lee TH. Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use. Biosensors. 2025; 15(1):13. https://doi.org/10.3390/bios15010013
Chicago/Turabian StyleKim, Sang-Uk, Young Jun Kim, and Tae Hee Lee. 2025. "Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use" Biosensors 15, no. 1: 13. https://doi.org/10.3390/bios15010013
APA StyleKim, S.-U., Kim, Y. J., & Lee, T. H. (2025). Polysaccharide Hydrogel-Assisted Biosensing Platforms for Point-of-Care Use. Biosensors, 15(1), 13. https://doi.org/10.3390/bios15010013