A Microfluidic Biosensor for Quantitative Detection of Salmonella in Traditional Chinese Medicine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Target Bacteria
2.3. Preparation of Immune MNBs
2.4. Preparation of Au@PtNCs
2.5. Preparation of Immune Au@PtNCs
2.6. Microfluidic Chip Design and Fabrication
2.7. Detection of Target Bacteria
2.8. Detection of the Target Bacteria in Niu Huang Qing Xin Wan
2.9. Development of the Portable Device
3. Results and Discussion
3.1. Characterization of AuNPs and Au@PtNCs
3.2. Verification of the Effectiveness of Microfluidic Chip
3.3. Verification of the Performance of Magnetic Fields
3.4. Optimization of Microfluidic Biosensor
3.5. Performance Evaluation of This Proposed Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kinsella, R.L.; Stallings, C.L. A Flexible and Deadly Way to Control Salmonella Infection. Immunity 2020, 53, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Juane, L.; Hao, W.; Shengbo, W.; Shengli, W.; Hongfei, F.; Haihua, R.; Jianjun, Q.; Qinggele, C.; Mingzhang, W. Salmonella: Infection mechanism and control strategies. Microbiol. Res. 2024, 292, 128013. [Google Scholar] [CrossRef]
- CDC. Salmonella. Available online: https://www.cdc.gov/salmonella/index.html (accessed on 3 October 2024).
- Commission, N.P. Pharmacopoeia of the People’s Republic of China (Part 4), 2020 Ed.; China Pharmaceutical Science and Technology Press: Beijing, China, 2020; p. 857. [Google Scholar]
- Chen, S.; Sun, Y.; Fan, F.; Chen, S.; Zhang, Y.; Zhang, Y.; Meng, X.; Lin, J.-M. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. TrAC Trends Anal. Chem. 2022, 157, 116737. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Z.; Wang, K.; Zhang, H.; Gao, J. Rapid detection of Salmonella in food matrices by photonic PCR based on the photothermal effect of Fe3O4. Food Chem. X 2023, 19, 100798. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Zhuang, J.; Li, J.; Xia, L.; Hu, K.; Yin, J.; Mu, Y. Digital Recombinase Polymerase Amplification, Digital Loop-Mediated Isothermal Amplification, and Digital CRISPR-Cas Assisted Assay: Current Status, Challenges, and Perspectives. Small 2023, 19, e2303398. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.-H.; Lee, S.; Lee, S.-K.; Kim, J.-H.; Park, J.-H. Microfluidic chip with integrated separation, mixing, and concentration operations for rapid and sensitive bacterial detection utilizing synthetic inorganic antibodies. Sens. Actuator B-Chem. 2023, 404, 135202. [Google Scholar] [CrossRef]
- Quan, H.; Wang, S.; Xi, X.; Zhang, Y.; Ding, Y.; Li, Y.; Lin, J.; Liu, Y. Deep learning enhanced multiplex detection of viable foodborne pathogens in digital microfluidic chip. Biosens. Bioelectron. 2024, 245, 115837. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Zhao, Y.-N.; Zhang, X.; Wei, X.; Chen, M.-L.; Chen, X.-W. Biochemical analysis based on optical detection integrated microfluidic chip. TrAC Trends Anal. Chem. 2022, 158, 116865. [Google Scholar] [CrossRef]
- Chen, W.; Shao, F.; Xianyu, Y. Microfluidics-Implemented Biochemical Assays: From the Perspective of Readout. Small 2020, 16, e1903388. [Google Scholar] [CrossRef]
- Fu, X.; Sun, J.; Liang, R.; Guo, H.; Wang, L.; Sun, X. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens. Trends Food Sci. Technol. 2021, 116, 115–129. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef] [PubMed]
- Cui, P.; Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2019, 9, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Han, S.-I.; Sarkes, D.A.; Hurley, M.M.; Renberg, R.; Huang, C.; Li, Y.; Jahnke, J.P.; Sumner, J.J.; Stratis-Cullum, D.N.; Han, A. Identification of Microorganisms that Bind Specifically to Target Materials of Interest Using a Magnetophoretic Microfluidic Platform. ACS Appl. Mater. Interfaces 2023, 15, 11391–11402. [Google Scholar] [CrossRef]
- Jin, N.; Jiang, F.; Yang, F.; Ding, Y.; Liao, M.; Li, Y.; Lin, J. Multiplex nanozymatic biosensing of Salmonella on a finger-actuated microfluidic chip. Lab Chip 2024, 24, 2712–2720. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Chow, J.J.M.; Koo, S.H.; Tan, T.Y.; Jiang, B.; Ai, Y. Enhanced Molecular Diagnosis of Bloodstream Candida Infection with Size-Based Inertial Sorting at Submicron Resolution. Anal. Chem. 2020, 92, 15579–15586. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.; Chen, Y.; Zhou, Y.; Jiang, D.; Ni, Z.; Xiang, N. Inertia-magnetic microfluidics for rapid and high-purity separation of malignant tumor cells. Sens. Actuator B-Chem. 2023, 397, 134619. [Google Scholar] [CrossRef]
- Hussain, W.; Ullah, M.W.; Farooq, U.; Aziz, A.; Wang, S. Bacteriophage-based advanced bacterial detection: Concept, mechanisms, and applications. Biosens. Bioelectron. 2021, 177, 112973. [Google Scholar] [CrossRef]
- Wang, L.; Huo, X.; Jiang, F.; Xi, X.; Li, Y.; Lin, J. Dual-functional manganese dioxide nanoclusters for power-free microfluidic biosensing of foodborne bacteria. Sens. Actuator B-Chem. 2023, 393, 134242. [Google Scholar] [CrossRef]
- Kwon, K.; Gwak, H.; Hyun, K.-A.; Kwak, B.-S.; Jung, H.-I. High-throughput microfluidic chip for magnetic enrichment and photothermal DNA extraction of foodborne bacteria. Sens. Actuator B-Chem. 2019, 294, 62–68. [Google Scholar] [CrossRef]
- Gong, L.; Cretella, A.; Lin, Y. Microfluidic systems for particle capture and release: A review. Biosens. Bioelectron. 2023, 236, 115426. [Google Scholar] [CrossRef]
- Hao, L.; Xue, L.; Huang, F.; Cai, G.; Qi, W.; Zhang, M.; Han, Q.a.; Wang, Z.; Lin, J. A Microfluidic Biosensor Based on Magnetic Nanoparticle Separation, Quantum Dots Labeling and MnO2 Nanoflower Amplification for Rapid and Sensitive Detection of Salmonella Typhimurium. Micromachines 2020, 11, 281. [Google Scholar] [CrossRef]
- Ahn, H.; Batule, B.S.; Seok, Y.; Kim, M.G. Single-Step Recombinase Polymerase Amplification Assay Based on a Paper Chip for Simultaneous Detection of Multiple Foodborne Pathogens. Anal. Chem. 2018, 90, 10211–10216. [Google Scholar] [CrossRef] [PubMed]
- Suea-Ngam, A.; Howes, P.D.; deMello, A.J. An amplification-free ultra-sensitive electrochemical CRISPR/Cas biosensor for drug-resistant bacteria detection. Chem. Sci. 2021, 12, 12733–12743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liang, W.; Ran, Q.; Liu, F.; Chen, D.; Xiong, Y.; Jiang, D.; Li, Y.; Tu, D.; Luo, X.; et al. Ultrasensitive detection of NDM-1 resistant bacteria based on signal amplification with sandwich-type LNA electrochemical biochips. Sens. Actuator B-Chem. 2020, 306, 127556. [Google Scholar] [CrossRef]
- Xing, G.; Shang, Y.; Ai, J.; Lin, H.; Wu, Z.; Zhang, Q.; Lin, J.-M.; Pu, Q.; Lin, L. Nanozyme-Mediated Catalytic Signal Amplification for Microfluidic Biosensing of Foodborne Bacteria. Anal. Chem. 2023, 95, 13391–13399. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.; Ban, M.; Jin, X.; Li, A.; Tao, J.; Pan, L. An integrated distance-based microfluidic aptasensor for visual quantitative detection of Salmonella with sample-in-answer-out capability. Sens. Actuator B-Chem. 2023, 381, 133480. [Google Scholar] [CrossRef]
- Sun, J.; Wang, R.; Wang, L.; Wang, X.; Wang, J.; Shi, Z.; Chen, Z.; Wang, M.; Xu, C. Visual/quantitative SERS biosensing chip based on Au-decorated polystyrene sphere microcavity arrays. Sens. Actuator B-Chem. 2023, 388, 133869. [Google Scholar] [CrossRef]
- Cai, G.; Wang, Y.; Zhang, Y.; Zheng, L.; Lin, J. Magnetorheological elastomer and smartphone enable microfluidic biosensing of foodborne pathogen. Chin. Chem. Lett. 2023, 34, 108059. [Google Scholar] [CrossRef]
- Jiang, M.; Lin, Y.; Xu, L.; Chen, Z.; Wu, J.; Yuan, Y.; Zhou, L. Microfluidic colorimetric biosensor for rapid and sensitive detection of Shewanella oneidensis MR-1. Sens. Actuator B-Chem. 2024, 424, 136872. [Google Scholar] [CrossRef]
- Qi, W.; Zheng, L.; Hou, Y.; Duan, H.; Wang, L.; Wang, S.; Liu, Y.; Li, Y.; Liao, M.; Lin, J. A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chem. 2022, 381, 131801. [Google Scholar] [CrossRef]
- Tan, C.K.; Davies, M.J.; McCluskey, D.K.; Munro, I.R.; Nweke, M.C.; Tracey, M.C.; Szita, N. Electromagnetic stirring in a microbioreactor with non-conventional chamber morphology and implementation of multiplexed mixing. J. Chem. Technol. Biotechnol. 2015, 90, 1927–1936. [Google Scholar] [CrossRef]
- Fletcher, D. Fine particle high gradient magnetic entrapment. IEEE Trans. Magn. 1991, 27, 3655–3677. [Google Scholar] [CrossRef]
- Das, S.; Singh, S.; Tawde, Y.; Chakrabarti, A.; Rudramurthy, S.M.; Kaur, H.; Shankarnarayan, S.A.; Ghosh, A. A Selective Medium for Isolation and Detection of Candida auris, an Emerging Pathogen. J. Clin. Microbiol. 2021, 59. [Google Scholar] [CrossRef]
- Yang, D.; Deng, Z.; Wang, S.; Yin, X.; Xi, J.; Andersson, M.; Wang, J.; Zhang, D. Polydopamine-coated two-dimensional nanomaterials as high-affinity photothermal signal tag towards dual-signal detection of Salmonella typhimurium by lateral flow immunoassay. Chem. Eng. J. 2023, 472, 145110. [Google Scholar] [CrossRef]
- Yin, P.; Wang, J.; Li, T.; Pan, Q.; Zhu, L.; Yu, F.; Zhao, Y.Z.; Liu, H.B. A smartphone-based fluorescent sensor for rapid detection of multiple pathogenic bacteria. Biosens. Bioelectron. 2023, 242, 115744. [Google Scholar] [CrossRef]
- Zhan, K.; Chen, L.; Li, S.; Yu, Q.; Zhao, Z.; Li, J.; Xing, Y.; Ren, H.; Wang, N.; Zhang, G. A novel metal-organic framework based electrochemical immunosensor for the rapid detection of Salmonella typhimurium detection in milk. Food Chem. 2024, 444, 138672. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Park, J.; Lim, S.Y.; Kwon, Y.; Bae, N.H.; Park, J.-K.; Lee, S.J. Integrated pumpless microfluidic chip for the detection of foodborne pathogens by polymerase chain reaction and electrochemical analysis. Sens. Actuator B-Chem. 2021, 329, 129130. [Google Scholar] [CrossRef]
- Hu, J.; Tang, F.; Wang, L.; Tang, M.; Jiang, Y.-Z.; Liu, C. Nanozyme sensor based-on platinum-decorated polymer nanosphere for rapid and sensitive detection of Salmonella typhimurium with the naked eye. Sens. Actuator B-Chem. 2021, 346, 130560. [Google Scholar] [CrossRef]
Methods | Target | LOD (CFU/mL) | Linear Range (CFU/mL) | Total Time (h) | References |
---|---|---|---|---|---|
Culture | C. auris | 1.3 × 102 | —— | 48 | [35] |
LFIA | S. typhimurium | 10 × 102 | 10 × 102–1.0 × 107 | 0.5 | [36] |
Fluorescent | S. typhimurium | 1.0 × 102 | 1.0 × 102–10 × 107 | 0.7 | [37] |
Electrochemical | S. typhimurium | 0.94 × 102 | 1.3 × 102–13 × 107 | 0.8 | [38] |
PCR | E. Coli O157:H7 | 1.0 × 102 | 0.1 × 102–0.01 × 107 | 1.3 | [39] |
Colorimetric | S. typhimurium | 56 × 102 | 100 × 102–0.1 × 107 | 0.8 | [40] |
Colorimetric | S. typhimurium | 0.90 × 102 | 0.9 × 102–0.09 × 107 | 1.2 | This biosensor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Liu, Y.; Ma, J.; Zhu, S.; Zhao, X.; Mou, H.; Ke, X.; Wu, Z.; Wang, Y.; Lin, S.; et al. A Microfluidic Biosensor for Quantitative Detection of Salmonella in Traditional Chinese Medicine. Biosensors 2025, 15, 10. https://doi.org/10.3390/bios15010010
Wu Y, Liu Y, Ma J, Zhu S, Zhao X, Mou H, Ke X, Wu Z, Wang Y, Lin S, et al. A Microfluidic Biosensor for Quantitative Detection of Salmonella in Traditional Chinese Medicine. Biosensors. 2025; 15(1):10. https://doi.org/10.3390/bios15010010
Chicago/Turabian StyleWu, Yutong, Yang Liu, Jinchen Ma, Shanxi Zhu, Xiaojun Zhao, Huawei Mou, Xuanqi Ke, Zhisheng Wu, Yifei Wang, Sheng Lin, and et al. 2025. "A Microfluidic Biosensor for Quantitative Detection of Salmonella in Traditional Chinese Medicine" Biosensors 15, no. 1: 10. https://doi.org/10.3390/bios15010010
APA StyleWu, Y., Liu, Y., Ma, J., Zhu, S., Zhao, X., Mou, H., Ke, X., Wu, Z., Wang, Y., Lin, S., & Qi, W. (2025). A Microfluidic Biosensor for Quantitative Detection of Salmonella in Traditional Chinese Medicine. Biosensors, 15(1), 10. https://doi.org/10.3390/bios15010010